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  Review of neutrino oscillations 
  The MINOS experiment and results 

 Muon neutrino disappearance 
 Muon antineutrino disappearance 
 NC event rate 
 Electron neutrino appearance 

  MINOS+ 



Neutrinos Have Mass! 

  νe, νµ, ντ↔ ν1, ν2, ν3 
  Flavor States: creation 

and detection 
  Mass States: propagation  

  A neutrino created as one 
flavor can later be detected as 
another flavor, depending on: 
  distance traveled (L) 
  neutrino energy (E) 

  difference in the squared masses 
(Δm2

ij=m2
i-m2

j)#
  The mixing amplitudes (Uαj) 
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The PMNS Mixing Matrix 

  (12) Sector: Reactor + Solar, L/E~15,000 km/GeV 

  (23) Sector: atmospheric and accelerator, L/E~500 km/GeV 

  (13) Sector mixing not yet observed 

†Δm21
2 = 7.50−0.20

+0.19 ×10−5  eV2 tan2θ12 = 0.452−0.033
+0.035

†† Δm32
2 = 2.32−0.08

+0.12 ×10−3  eV2 *sin2 (2θ23) > 0.96(90% C.L.)
†PRD 83.052002(2011) 
††PRL 106. 181801(2011)   
*SuperK Preliminary, Nu2010 
** Eur.Phys. C27:331-374,2003 
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**sin2 (2θ13) < 0.15 − 0.16



Why Measure All These Angles? 
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  Precision measurements provide a 
valuable check that neutrino oscillations 
are the solution to neutrino anomalies  

  PMNS matrix analogous to CKM matrix 
  lepton sector mixing much larger than 

quark sector mixing 
  θ23 maximal, θ12 moderately large, θ13 

small, zero? why? 
  Is there CP violation in the lepton sector?  
  Is it big enough to account for matter vs. 

antimatter asymmetry in the Universe? 
  Small neutrino mass suggests a heavy 

partner (see-saw mechanism)—
Neutrinos provide a window to physics 
at the GUT scale! 



The MINOS Experiment 

P. Vahle, INFO 2011 

6 

  Long-baseline neutrino oscillation 
experiment 

 Neutrinos from NuMI 
beam line 

 L/E ~ 500 km/GeV 
 atmospheric Δm2#

 Two detectors mitigate 
  systematic effects 

 beam flux mis-   
  modeling 
 neutrino interaction  

 uncertainties 

Far Detector 
735 km from Source 

Near Detector 
1 km from Source 



MINOS Physics Goals 
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  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) #
  test oscillations vs. decay/

decoherence 
  look for differences between 

neutrino and anti-neutrinos 

Δm2
32 

Δm2
21 

νµ →νX



MINOS Physics Goals 
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Δm2
32 

Δm2
21 

νµ →νS

Δm2
14 

  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) #
  test oscillations vs. decay/

decoherence 
  look for differences between 

neutrino and anti-neutrinos 

  Mixing to sterile neutrinos? 



MINOS Physics Goals 
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Δm2
32 

Δm2
21 

νµ →νe

  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) #
  test oscillations vs. decay/

decoherence 
  look for differences between 

neutrino and anti-neutrinos 

  Mixing to sterile neutrinos? 
  Study νμ→νe mixing 

 measure θ13#



The Detectors 
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1 kt Near Detector— 
measure beam 
before  
oscillations 

5.4 kt Far Detector— 
look for changes in the beam 
relative to the Near Detector 

Magnetized, tracking calorimeters 

735 km from source 

1 km from source 



Soudan Fire 
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 March 17, smoke detected in FD 
hall due to a fire in the shaft 

 Power to the lab shut off 
automatically 

 Foam pumped in to extinguish 
the fire 

 No damage to the MINOS 
detector 

 Detector returned to full 
operations May 19 

Fire Retardant Foam  
Fills the Hall 

After Cleanup 



Detector Technology 
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Multi-anode PMT 

Extruded 
PS scint. 
4.1 x 1 cm2 

WLS fiber 

Clear 
Fiber cables 

2.54 cm Fe 

U V planes 
+/- 450 

  Tracking sampling calorimeters 
  steel absorber 2.54 cm thick (1.4 X0) 
  scintillator strips 4.1 cm wide  
   (1.1 Moliere radii) 
  1 GeV muons penetrate 28 layers 

  Magnetized 
 muon energy from range/curvature 
 distinguish μ+ from μ-#

  Functionally equivalent 
  same segmentation  
  same materials 
  same mean B field (1.3 T) 



e-#

CC νe  Event #

Events in MINOS 

NC Event #
ν #
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  νμ Charged Current events: 
  long μ track, with hadronic activity at vertex 
  neutrino energy from sum of muon energy (range or 

curvature) and shower energy 

CC νμ  Event #

μ-#

Depth (m) 

Tr
an

sv
er

se
 p

os
iti

on
 (

m
) 

νµ + N → µ + X

Simulated Events 



e-#

CC νe  Event #

Events in MINOS 

NC Event #
ν #
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  Neutral Current events: 
  short, diffuse shower event 
  shower energy from calorimetric response 

Simulated Events 



e-#

CC νe  Event #

Events in MINOS 

NC Event #
ν #
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CC νμ  Event #

μ-#

Depth (m) 

νe + N → e− + XTr
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  νe Charged Current events: 
  compact shower event with an EM core 
  neutrino energy from calorimetric response 

Simulated Events 



Making a Neutrino Beam 
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  Production 
  bombard graphite target with 120 GeV p+ from Main Injector 

  2 interaction lengths 
  310 kW typical power 

  produce hadrons, mostly π and K 



Making a Neutrino Beam 
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  Focusing 
  hadrons focused by 2 magnetic focusing horns 
  energy of focused particles depends on separation between 

target and horns 
  sign selected hadrons 

  forward current, (+) for standard neutrino beam runs 
  reverse current, (–) for anti-neutrino beam 



Making a Neutrino Beam 
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  Decay 
 2 m diameter decay pipe 
  result: wide band neutrino beam 
  secondary beam monitored 



Making a Neutrino Beam 
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π- 

π+ 

Target
 Focusing Horns


2 m 

675 m


νµ 

νµ 

15 m
 30 m


120 GeV 
p’s from MI


Neutrino mode 
Horns focus π+, K+ 

νμ:  91.7%  
νμ:  7.0% 
νe+νe :  1.3% 
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Making an Anti-neutrino Beam 
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π- 

π+ 

Target
 Focusing Horns


2 m 

675 m


νµ 

νµ 

15 m
 30 m


120 GeV 
p’s from MI


Anti-neutrino Mode 
Horns focus π-, K- 
enhancing the νμ flux 

Neutrino mode 
Horns focus π+, K+ 

νμ:  39.9%  
νμ:  58.1% 
νe+νe :  2.0% 

Ev
en

ts
 

Ev
en

ts
 

νμ:  91.7%  
νμ:  7.0% 
νe+νe :  1.3% 



Near to Far 
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  Neutrino energy depends on angle wrt original pion 
direction and parent energy 
 higher energy pions decay further along decay pipe 
 angular distributions different between Near and Far  

FD#
Decay Pipe#

π+#
Target#

ND#

p#

Far spectrum without oscillations is similar, but not identical to 
the Near spectrum! 

Eν ≈ 0.43
Eπ

1+ γ 2θν
2



Extrapolation 
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  Muon-neutrino and anti-neutrino analyses: beam matrix for 
FD prediction of track events 

  NC and electron-neutrino analyses: Far to Near spectrum 
ratio for FD prediction of shower events 
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Unoscillated 

Oscillated 

  νμ spectrum#

νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio#

Monte Carlo#
(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )#

Characteristic 
Shape 

Monte Carlo#



Unoscillated 

Oscillated 

  νμ spectrum#

νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio#

Monte Carlo#
(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )#

Monte Carlo#

sin2(2θ)#



Unoscillated 

Oscillated 

  νμ spectrum#

νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio#

Monte Carlo#
(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )#

Monte Carlo#

Δm2#



CC events in the Near Detector 
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  Show ND energy spectrum 
  Majority of data from 

low energy beam 
  High energy beam 

improves statistics in 
energy range above 
oscillation dip 

  Additional exposure in 
other configurations for 
commissioning and 
systematics studies 



Far Detector CC Events 
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Predicted 
(no osc.) 

Observed 

Contained 2451 1986 

Non-
contained 

2206 2017 

 Oscillations fit the data well, 66% 
of experiments have worse χ2 

Contained Vertex Events Non-contained Vertex Events 

P. Adamson et al., Phys.Rev.Lett. 106 181801 (2011) 



Contours 
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  Pure decoherence† 
disfavored at 9σ#

  Pure decay‡ 
disfavored at 7σ#

Δm2 = 2.32−0.08
+0.12 ×10−3eV2

sin2 (2θ) > 0.90 (90%C.L.)

†G.L. Fogli et al., PRD 67:093006 (2003)  
‡V. Barger et al., PRL 82:2640 (1999) 
*J. Hosaka et al., Phys. Rev. D 74, 032002 (2006) 

* 



Anti-neutrino Disappearance 
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  Measure oscillations using 7% anti-neutrino 
component of the neutrino beam 

  Peaked at higher energies 

  Selection efficiency 90%, purity 95%#



Anti-neutrino Disappearance 
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No Oscillations: 150.3−18.2
+16.3

With Oscillations: 136.4−14.9
+15.2

Observed: 130

at sin2 (2θ 23) = 1

Δm2 <  3.37 ×  10−3  eV2  (90% C.L.)



ND Anti-neutrino Data 
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 Focus and select positive 
muons 
 purity 94.3% after charge 

sign cut 
 purity 98% < 6GeV 

 Analysis proceeds as (2008) 
neutrino analysis 

 Data/MC agreement 
comparable to neutrino 
running 
 different average kinematic 

distributions 
 more forward muons 



FD Data 
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Δm2 = 3.36−0.40
+0.46 ×10−3eV2

sin2 (2θ) = 0.86−0.12
+0.11

  No oscillation 
Prediction: 156 

  Observe:  97 
  No oscillations  

disfavored at 6.3σ#



Comparisons to Neutrinos 

P. Vahle, INFO 2011 

33 



All Contours Together 
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Anti-neutrino Disappearance Outlook 
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  Updated anti-neutrino disappearance analysis with 
3x1020 POT exposure expected this summer 



Neutral Current Near Event Rates 

P. Vahle, INFO 2011 

36 

  Neutral Current event rate 
should not change in 
standard 3 flavor oscillations 

  A deficit in the Far event rate 
could indicate mixing to 
sterile neutrinos 

  νe CC events would be 
included in NC sample, 
results depend on the 
possibility of νe appearance 



Neutral Currents in the Far Detector 

P. Vahle, INFO 2011 

37 

  Expect:  757 events 

 Observe:  802 events 

 No deficit of NC events 

fs ≡
Pνµ →νs

1− Pνµ →νµ

< 0.22 (0.40) at 90% C.L.
no (with) νe appearance  

R= Ndata − BG
SNC

1.09 ± 0.06 (stat.) ± 0.05 (syst.)
(no νe appearance)

1.01 ± 0.06 (stat.) ± 0.05 (syst.) 
(with νe  appearance)



P. Vahle, INFO 2011 

38 

 At L/E~500 km/GeV, dominant oscillation mode is νµ→ντ #
 A few percent of the missing νµ could change into νe 

P νµ →νe( ) = Patm e
− i(

Δm32
2 L
4E

+δcp ) + Psol

2

Patm = sin2θ23 sin
2 2θ13 sin

2 Δm31
2 L
4E

⎛
⎝⎜

⎞
⎠⎟
Psol ≈ cos

2θ23 sin
2 2θ12 sin

2 Δm21
2 L

4E
⎛
⎝⎜

⎞
⎠⎟

“Atmospheric” Term 
Depends on Δm2#

and unknown θ13#

“Solar” Term 
<1% for current 

accelerator experiments#

νe Appearance 



νe Appearance 
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Interference Term 
- for neutrinos 

+ for antineutrinos 

 
2 Patm Psol cos

Δm32
2 L
4E

⎛
⎝⎜

⎞
⎠⎟
cosδCP  2 Patm Psol sin

Δm21
2 L

4E
⎛
⎝⎜

⎞
⎠⎟
sinδCP

if δCP ≠ 0,

P νµ →νe( ) ≠ P ν µ →ν e( )

 At L/E~500 km/GeV, dominant oscillation mode is νµ→ντ #
 A few percent of the missing νµ could change into νe 

P νµ →νe( ) = Patm e
− i(

Δm32
2 L
4E

+δcp ) + Psol

2



νe Appearance 
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Patm = sin2θ23 sin
2 2θ13 sin

2 Δm31
2 L
4E

− aL
⎛
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⎞
⎠⎟

Δm31
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Psol ≈ cos
2θ23 sin

2 2θ12 sin
2 aL( )

Δm21
2 L

4E
aL

⎛

⎝

⎜
⎜
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⎞

⎠

⎟
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2

In matter, additional term in 
Hamiltonian from νe + e CC 
scattering modifies oscillation 
probability, ~30% effect in 
MINOS 

a = ±
GFNe

2
≈ (4000 km)−1

 At L/E~500 km/GeV, dominant oscillation mode is νµ→ντ #
 A few percent of the missing νµ could change into νe 

P νµ →νe( ) = Patm e
− i(

Δm32
2 L
4E

+δcp ) + Psol

2

Δm32
2

Δm21
2

Normal Hierarchy Δm32
2

Δm21
2

Inverted Hierarchy 

? 
⇔ 



The Updated Analysis 
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  Look for an excess of νe in the FD 
compared to prediction from ND 
measurement 
  select events with a νe topology 
  apply selection to ND, determine 

fraction of each background type 
  extrapolate each background type 

separately 
  fit FD data to extract oscillation 

parameters 
  Updated analysis: 

  new event selection 
  new fitting technique in the FD 
  more data 



Looking for Electron-neutrinos 

P. Vahle, INFO 2011 

42 

  New electron neutrino selection technique 

  Compare candidate events to a library of 
simulated signal and background events 

  Comparison made on a strip by strip basis 
  Discriminating variables formed using 

information from 50 best matches 

Input (data or MC) 
Compare to MC Library 

L = ln P(nA
i ;λ)P(nB

i ;λ)dλ
0

∞

∫
⎛

⎝⎜
⎞

⎠⎟i=1

Nstrips

∑
ΔL = −(Llib − Lself )

Library Event #1 

Library Event #3 

Library Event #2 

. . . 
Library Event #k 

Library Event #30M 

. . . 

Good Match 

Bad Match 

Compute 
variables 
using 
information 
from best N 
matches  



Discriminating Variables 
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  Three discriminating variables combined in neural net  

  Achieve ~40% signal efficiency, ~98% BG rejection 



Near Detector Data 

P. Vahle, INFO 2011 

44 

  ND data sample 
comprised of NC, 
νμ CC, beam νe CC 
interactions. 

  Each propagates 
to the FD in a 
different manner 

  Must determine 
relative 
composition of ND 
spectrum 



Measuring the Background 
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 Use ND data in different configurations to extract relative 
components of background 

 Selected event spectrum has different relative components of 
each background type 



Decomposition 
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(59%) 
(29%) 
(12%) 



νe Appearance Results 
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  In signal enhanced region, based on ND data, expect: 
49.5±7.0(stat.)±2.8(syst.) 



νe Appearance Results 
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  In signal enhanced region, based on ND data, expect: 
49.5±7.0(stat.)±2.8(syst.) 

  Observe:  62 events in the FD#



Fitting to Oscillations 
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  Oscillation parameters 
extracted from a full 3 
flavor fit to energy 
spectrum in 3 bins of PID 



Fitting to Oscillations 
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  Best fit: sin2(2θ13)=0.040 
(normal hierarchy, δCP=0, sin2(2θ23)=1)#



FD Data 
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  Energy spectrum for signal enhanced region 



νe Appearance Results 
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for δCP = 0, sin2 2θ23( ) = 1,

Δm32
2 = 2.32 ×10−3 eV2

sin2 (2θ13) = 0.04 (0.08) at best fit
sin2 (2θ13) < 0.12 (0.19) at 90% C.L.
sin2 (2θ13) = 0 excluded at 89%
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  We have more data on 
tape and will continue 
to run until next winter 

Comparing to T2K 



MINOS+ 
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  In the NOvA era, the MINOS detectors will be 
exposed to a high intensity beam peaked at 7 GeV 

  Above the oscillation sweet spot, but in a region that 
currently suffers from poor statistics  



MINOS+ 
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  Continue to contribute to oscillation parameter 
measurements, but with different systematics 



Non Standard Interactions in MINOS+ 

  High energy behavior 
can constrain models, 
for example NSI 
 NSI has a measurable 

effect in neutrinos as 
well as antineutrinos 

 Comparison of low 
energy to high energy 
behavior could 
disentangle this 
without anti-nu running 

J. Kopp, P.A.N. Machado and S.Parke, 
Phys.Rev.D82:113002 (2010). 



Summary 

P. Vahle, INFO 2011 

57 

  With 7x1020 POT of neutrino 
beam, MINOS finds 
  muon-neutrinos disappear 

  NC event rate is not diminished 

  Updated electron-neutrino 
appearance results: 

  With 1.71x1020 POT of anti-
neutrino beam 

Δm2 = 2.32−0.08
+0.12 ×10−3eV2,

sin2 (2θ) > 0.90 (90%C.L.)

fs < 0.22(0.40) at 90% C.L.

sin2 (2θ13) < 0.12 (0.19) at 90% C.L.
sin2 (2θ13) = 0 excluded at 89%

Δm2 = 3.36−0.40
+0.46 ×10−3eV2,

sin2 (2θ) = 0.86−0.12
+0.11

MINOS+ is on the horizon! 



Backup Slides 
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Beam Performance 
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  Started data taking 2005 
  1x1021 POT milestone achieved Summer 2010 

Green-LE neutrino running 
Orange-LE antineutrino running 
Red-Special runs, alternate target positions 
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Beam Performance 
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Anti- 
neutrino 
running 

Summer 2010 MINOS Results 

  7x1020 POT low energy neutrino mode 
  1.71x1020 POT antineutrino mode 



LE 10# ME# HE#

Neutrino Spectrum 
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  Use flexibility of beam line to constrain hadron 
production, reduce uncertainties due to neutrino flux 



Far/Near differences 
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 νμ CC events oscillate away 
 Event topology 

 Light level differences (differences in fiber lengths) 

 Multiplexing in Far (8 fibers per PMT pixel) 

 Single ended readout in Near 

 PMTs (M64 in Near Detector, M16 in Far): 
 Different gains/front end electronics 

 Different crosstalk patterns 

 Neutrino intensity 

 Relative energy calibration/energy resolution 

Account for these lower order effects using detailed detector simulation 



Analysis Improvements 
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  Since PRL 101:131802, 2008 
  Additional data 

  3.4x1020 → 7.2x1020 POT 

  Analysis improvements 
  updated reconstruction and 

simulation 
  new selection with increased 

efficiency 
  no charge sign cut 
  improved shower energy 

resolution 
  separate fits in bins of energy 

resolution 
  smaller systematic 

uncertainties 



New Muon-neutrino CC Selection 
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Shower Energy Resolution 
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Energy Resolution Binning 

P. Vahle, INFO 2011 
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CC Systematic Uncertainties 
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  Dominant systematic 
uncertainties: 
  hadronic energy 

calibration 
  track energy calibration 
 NC background 
  relative Near to Far 

normalization 



Resolution Binning 
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  Contour includes effects 
of dominant systematic 
uncertainties 
  normalization 
 NC background 
  shower energy 
  track energy 



Contours by Run Period 

P. Vahle, INFO 2011 
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Fits to NC   
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  Fit CC/NC spectra 
simultaneously with 
a 4th (sterile) 
neutrino 

  2 choices for 4th 
mass eigenvalue 
 m4>>m3 
 m4=m1 





Electron-neutrino Systematics 
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  Systematics evaluated 
using modified MC 

  Effect of systematics on 
each bin added in 
quadrature 

  Systematics in each bin 
included in fit as nuisance 
parameters 



Electron-neutrino prediction in FD 
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  Total BG:      49 
 NC:     34 
 Muon-neutrino CC:   7 
 beam electron-neutrinos:  6 
  tau-neutrino CC:   2 

  Signal at CHOOZ limit:   30 



Electron-neutrino F/N ratios 
75 



Checking Signal Efficiency 

P. Vahle, INFO 2011 
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  Test beam 
measurements 
demonstrate 
electrons are well 
simulated 



Checking Signal Efficiency 
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  Check electron neutrino selection efficiency by 
removing muons, add a simulated electron 



Muon Removed Sample 
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FD Electron-neutrinos Vertices 
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Electron-neutrino Event Rate 
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Feldman-Cousins Effect 
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Cross Check Fits 

P. Vahle, INFO 2011 

82 

  OFFICIAL FIT     0.040  0.115  

  LEM energy shape fit < 5 GeV  0.021  0.089 
  ANN energy shape fit    0.046  0.135 
  ANN energy shape fit < 5 GeV  0.045  0.136 
  2010-style analysis (ANN rate-only)  0.041  0.130 
  LEM rate-only     0.064  0.147 
  LEM shape fit     0.046  0.121 
  Official fit excluding new data  0.057  0.144



electron anti-neutrino appearance 
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Combined fits 
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Combined Fits 
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Anti-neutrino Disappearance 

P. Vahle, INFO 2011 

86 

No Oscillations: 150.3−18.2
+16.3

With Oscillations: 136.4−14.9
+15.2

Observed: 130

at sin2 (2θ 23) = 1

Δm2 <  3.37 ×  10−3  eV2  (90% C.L.)



Anti-neutrino Disappearance 
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  Hadron production and cross sections conspire to 
change the shape and normalization of energy 
spectrum 

~3x fewer antineutrinos for the same exposure 

Making an antineutrino beam 



Anti-neutrino Selection 
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ND Data 

P. Vahle, INFO 2011 

90 

  Data/MC agreement 
comparable to 
neutrino running 



FD Data 
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Anti-neutrino Systematics 
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FD Anti-neutrino Data 
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  Vertices uniformly distributed 
  Track ends clustered around coil hole 



Atmospheric Neutrinos 
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Rν /ν
data / Rν /ν

MC = 1.04−0.10
+0.11 ± 0.10

Δm2 − Δm2 = 0.4−1.2
+2.5 ×10−3eV2



MINOS+ 
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  Sterile neutrino reach 
  Use CC disappearance 

(brown) 
  NC rate (purple) 



Extra Dimensions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Neutrino Energy (GeV)
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1.0

P(
ν µ   

  ν
µ)

Standard (Normal)
Standard (Inverted)
R = 5x10-7m (Normal)
R = 5x10-7m (Inverted)

MINOS, L = 735 km (without matter effect)

sin22θ13=0.07sin22θ23=1 Δm2
atm=2.49x10-3eV2

Δm2
sol=7.56x10-5eV2sin2θ12=0.319

m0 = 0

δ = 0

Assumes heavy RH 
(sterile) neutrino + 
extra dimensions! 

P.A.N.Machado, H.Nunokawa,R.Zukanovich 
Funchal, hep-ph/1101.003v1 



Tau Neutrinos 

#  There are 80 tau events/ 1000 
NC 
#  With some work it might be 
possible to see a signal but its hard! 
#  OPERA have 1 tau event so far… 



Seasonal Muon Variation 
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Near to Far 
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Far spectrum without oscillations is similar, but not identical to 
the Near spectrum! 

Eν ≈ 0.43
Eπ

1+ γ 2θν
2


