The NOvA Experiment

Mark Messier
Indiana University / Caltech
18 July 2011

Implications of Neutrino Flavor Oscillations (INFO) 2011
Sante Fe, New Mexico
NOvA Collaboration

24 Institutions
110 physicists
The NOvA Experiment

• “Executive summary” of the experiment
 ‣ Experimental setup
 ‣ Overview of physics program

• NOvA Physics
 ‣ Neutrino oscillations and NOvA
 ‣ $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ channels
 ‣ $\nu_\mu \rightarrow \nu_\mu$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ channels

• The NOvA detectors
 ‣ Detector design
 ‣ Construction progress and schedule
 ‣ NOvA prototype detector

• Future ideas for NOvA
The NOvA Experiment

• NOvA is a second generation experiment on the NuMI beamline which is optimized for the detection of $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations

• NOvA is:
 • An upgrade of the NuMI beam intensity from 400 kW to 700 kW
 • A 15 kt “totally active” tracking liquid scintillator calorimeter sited 14 mrad off the NuMI beam axis at a distance of 810 km
 • A 220 ton near detector identical to the far detector sited 14 mrad off the NuMI beam axis at a distance of 1 km
NOvA Far Detector Location

Ash River, MN
810 km from Fermilab

Medium Energy Tune

- on-axis
- 7 mrad off-axis
- 14 mrad off-axis
- 21 mrad off-axis

ν CC events / kt / 1E21 POT / 0.2 GeV

NuMI beam at 700 kW and
Near detector underground
Event quality
Topologies of basic interaction channels shown at right. Each “pixel” is a single 4 cm x 6 cm x 15 m cell of liquid scintillator.

- **Top:** ν_μ charged-current
- **Center:** ν_e charged-current
- **Bottom:** neutral-current

Need >100:1 rejection against background.

Detector challenge: Achieve large target mass (10’s+ kilotons) while maintaining high granularity to avoid confusing the detection channels.

NOvA achieves 35% efficiency for ν_e CC while limiting NC→ν_e CC fake rate to 0.1%.
Event quality

Topologies of basic interaction channels shown at right. Each “pixel” is a single 4 cm x 6 cm x 15 m cell of liquid scintillator

Top: ν_μ charged-current

Center: ν_e charged-current

Bottom: neutral-current

Need >100:1 rejection against background

Detector challenge: Achieve large target mass (10’s+ kilotons) while maintaining high granularity to avoid confusing the detection channels

NOvA achieves 35% efficiency for ν_e CC while limiting NC→ν_e CC fake rate to 0.1%
Event quality

Topologies of basic interaction channels shown at right. Each “pixel” is a single 4 cm x 6 cm x 15 m cell of liquid scintillator

- **Top:** ν_μ charged-current
- **Center:** ν_e charged-current
- **Bottom:** neutral-current

Need >100:1 rejection against background

Detector challenge: Achieve large target mass (10’s+ kilotons) while maintaining high granularity to avoid confusing the detection channels

NOvA achieves 35% efficiency for ν_e CC while limiting NC→ν_e CC fake rate to 0.1%
Questions for the future
As the first chapter in the study of neutrino oscillations comes to an end, a new chapter begins. The great progress in neutrino physics over the last few decades raises new questions and provides opportunities for major discoveries. Among the compelling issues today:

1) What is the value of θ_{13}, the mixing angle between first- and third-generation neutrinos for which, so far, experiments have only established limits? Determining the size of θ_{13} has critical importance not only because it is a fundamental parameter, but because its value will determine the tactics to best address many other questions in neutrino physics.

2) Do neutrino oscillations violate CP? If so, how can neutrino CP violation drive a matter-antimatter asymmetry among leptons in the early universe (leptogenesis)? What is the value of the CP violating phase, which is so far completely unknown? Is CP violation among neutrinos related to CP violation in the quark sector?

3) What are the relative masses of the three known neutrinos? Are they “normal,” analogous to the quark sector, ($m_2 > m_1 > m_3$) or do they have a so-called “inverted” hierarchy ($m_2 > m_1 > m_3$)? Oscillation studies currently allow either ordering. The ordering has important consequences for interpreting the results of neutrinoless double beta decay experiments and for understanding the origin and pattern of masses in a more fundamental way, restricting possible theoretical models.

4) Is θ_{23} maximal (45 degrees)? if so, why? Will the pattern of neutrino mixing provide insights regarding unification of the fundamental forces? Will it indicate new symmetries or new selection rules?

5) Are neutrinos their own antiparticles? Do they give rise to lepton number violation, or leptogenesis, in the early universe? Do they have observable laboratory consequences such as the sought-after neutrinoless double beta decay in nuclei?

6) What can we learn from observation of the intense flux of neutrinos from a supernova within our galaxy? Can we observe the neutrino remnants of all supernovae that have occurred since the beginning of time?

7) What can neutrinos reveal about other astrophysical phenomena? Will we find localized cosmic sources of very-high-energy neutrinos?

8) What can neutrinos tell us about new physics beyond the Standard Model, dark energy, extra dimensions? Do sterile neutrinos exist?
Questions for the future
As the first chapter in the study of neutrino oscillations comes to an end, a new chapter begins. The great progress in neutrino physics over the last few decades raises new questions and provides opportunities for major discoveries. Among the compelling issues today:

1) What is the value of θ_{13}, the mixing angle between first- and third-generation neutrinos for which, so far, experiments have only established limits? Determining the size of θ_{13} has critical importance not only because it is a fundamental parameter, but because its value will determine the tactics to best address many other questions in neutrino physics.

2) Do neutrino oscillations violate CP? If so, how can neutrino CP violation drive a matter-antimatter asymmetry among leptons in the early universe (leptogenesis)? What is the value of the CP violating phase, which is so far completely unknown? Is CP violation among neutrinos related to CP violation in the quark sector?

3) What are the relative masses of the three known neutrinos? Are they “normal,” analogous to the quark sector, ($m_3 > m_2 > m_1$) or do they have a so-called “inverted” hierarchy ($m_2 > m_1 > m_3$)? Oscillation studies currently allow either ordering. The ordering has important consequences for interpreting the results of neutrinoless double beta decay experiments and for understanding the origin and pattern of masses in a more fundamental way, restricting possible theoretical models.

4) Is θ_{23} maximal (45 degrees)? if so, why? Will the pattern of neutrino mixing provide insights regarding unification of the fundamental forces? Will it indicate new symmetries or new selection rules?

5) Are neutrinos their own antiparticles? Do they give rise to lepton number violation, or leptogenesis, in the early universe? Do they have observable laboratory consequences such as the sought-after neutrinoless double beta decay in nuclei?

6) What can we learn from observation of the intense flux of neutrinos from a supernova within our galaxy? Can we observe the neutrino remnants of all supernovae that have occurred since the beginning of time?

7) What can neutrinos reveal about other astrophysical phenomena? Will we find localized cosmic sources of very-high-energy neutrinos?

8) What can neutrinos tell us about new physics beyond the Standard Model, dark energy, extra dimensions? Do sterile neutrinos exist?

90% CL Sensitivity to $\sin^2(2\theta_{13}) \neq 0$

NOvA searches for electron neutrino appearance down to ~ 0.01 at 90% CL
Questions for the future
As the first chapter in the study of neutrino oscillations comes to an end, a new chapter begins. The great progress in neutrino physics over the last few decades raises new questions and provides opportunities for major discoveries. Among the compelling issues today:

1) What is the value of θ_{13}, the mixing angle between first- and third-generation neutrinos for which, so far, experiments have only established limits? Determining the size of θ_{13} has critical importance not only because it is a fundamental parameter, but because its value will determine the tactics to best address many other questions in neutrino physics.

2) Do neutrino oscillations violate CP? If so, how can neutrino CP violation drive a matter-antimatter asymmetry among leptons in the early universe (leptogenesis)? What is the value of the CP violation phase, which is so far completely unknown? Is CP violation among neutrinos related to CP violation in the quark sector?

3) What are the relative masses of the three known neutrinos? Are they “normal,” analogous to the quark sector, ($m_3 > m_2 > m_1$) or do they have a so-called “inverted” hierarchy ($m_2 > m_1 > m_3$)? Oscillation studies currently allow either ordering. The ordering has important consequences for interpreting the results of neutrinoless double beta decay experiments and for understanding the origin and pattern of masses in a more fundamental way, restricting possible theoretical models.

4) Is θ_{23} maximal (45 degrees)? If so, why? Will the pattern of neutrino mixing provide insights regarding unification of the fundamental forces? Will it indicate new symmetries or new selection rules?

5) Are neutrinos their own antiparticles? Do they give rise to lepton number violation, or leptogenesis, in the early universe? Do they have observable laboratory consequences such as the sought-after neutrinoless double beta decay in nuclei?

6) What can we learn from observation of the intense flux of neutrinos from a supernova within our galaxy? Can we observe the neutrino remnants of all supernovae that have occurred since the beginning of time?

7) What can neutrinos reveal about other astrophysical phenomena? Will we find localized cosmic sources of very-high-energy neutrinos?

8) What can neutrinos tell us about new physics beyond the Standard Model, dark energy, extra dimensions? Do sterile neutrinos exist?

NOvA provides the first look into the CPV parameter space

Questions for the future
As the first chapter in the study of neutrino oscillations comes to an end, a new chapter begins. The great progress in neutrino physics over the last few decades raises new questions and provides opportunities for major discoveries. Among the compelling issues today:

1) What is the value of θ_{13}, the mixing angle between first- and third-generation neutrinos for which, so far, experiments have only established limits? Determining the size of θ_{13} has critical importance not only because it is a fundamental parameter, but because its value will determine the tactics to best address many other questions in neutrino physics.

2) Do neutrino oscillations violate CP? If so, how can neutrino CP violation drive a matter-antimatter asymmetry among leptons in the early universe (leptogenesis)? What is the value of the CP violating phase, which is so far completely unknown? Is CP violation among neutrinos related to CP violation in the quark sector?

3) What are the relative masses of the three known neutrinos? Are they “normal,” analogous to the quark sector, ($m_3 > m_2 > m_1$) or do they have a so-called “inverted” hierarchy ($m_2 > m_1 > m_3$)? Oscillation studies currently allow either ordering. The ordering has important consequences for interpreting the results of neutrinoless double beta decay experiments and for understanding the origin and pattern of masses in a more fundamental way, restricting possible theoretical models.

4) Is θ_{23} maximal (45 degrees)? If so, why? Will the pattern of neutrino mixing provide insights regarding unification of the fundamental forces? Will it indicate new symmetries or new selection rules?

5) Are neutrinos their own antiparticles? Do they give rise to lepton number violation, or leptogenesis, in the early universe? Do they have observable laboratory consequences such as the sought-after neutrinoless double beta decay in nuclei?

6) What can we learn from observation of the intense flux of neutrinos from a supernova within our galaxy? Can we observe the neutrino remnants of all supernovae that have occurred since the beginning of time?

7) What can neutrinos reveal about other astrophysical phenomena? Will we find localized cosmic sources of very-high-energy neutrinos?

8) What can neutrinos tell us about new physics beyond the Standard Model, dark energy, extra dimensions? Do sterile neutrinos exist?

NOvA's long baseline makes it sensitive to the mass ordering

4) Is θ_{23} maximal?

Because of its excellent energy resolution, NOvA can make $\sim 1\%$ measurements of muon neutrino disappearance using quasi-elastic channel.
Questions for the future
As the first chapter in the study of neutrino oscillations comes to an end, a new chapter begins. The great progress in neutrino physics over the last few decades raises new questions and provides opportunities for major discoveries. Among the compelling issues today:

1) What is the value of θ_{13}, the mixing angle between first- and third-generation neutrinos for which, so far, experiments have only established limits? Determining the size of θ_{13} has critical importance not only because it is a fundamental parameter, but because its value will determine the tactics to best address many other questions in neutrino physics.

2) Do neutrino oscillations violate CP? If so, how can neutrino CP violation drive a matter-antimatter asymmetry among leptons in the early universe (leptogenesis)? What is the value of the CP violating phase, which is so far completely unknown? Is CP violation among neutrinos related to CP violation in the quark sector?

3) What are the relative masses of the three known neutrinos? Are they “normal,” analogous to the quark sector, ($m_3 > m_2 > m_1$) or do they have a so-called “inverted” hierarchy ($m_2 > m_1 > m_3$)? Oscillation studies currently allow either ordering. The ordering has important consequences for interpreting the results of neutrinoless double beta decay experiments and for understanding the origin and pattern of masses in a more fundamental way, restricting possible theoretical models.

4) Is θ_{23} maximal (45 degrees)? if so, why? Will the pattern of neutrino mixing provide insights regarding unification of the fundamental forces? Will it indicate new symmetries or new selection rules?

5) Are neutrinos their own antiparticles? Do they give rise to lepton number violation, or leptogenesis, in the early universe? Do they have observable laboratory consequences such as the sought-after neutrinoless double beta decay in nuclei?

6) What can we learn from observation of the intense flux of neutrinos from a supernova within our galaxy? Can we observe the neutrino remnants of all supernovae that have occurred since the beginning of time?

7) What can neutrinos reveal about other astrophysical phenomena? Will we find localized cosmic sources of very-high-energy neutrinos?

8) What can neutrinos tell us about new physics beyond the Standard Model, dark energy, extra dimensions? Do sterile neutrinos exist?

If NOvA establishes inverted hierarchy and next generation of $0\nu\beta\beta$ experiments see nothing, then it is very likely that neutrinos are Dirac particles.
Questions for the future

As the first chapter in the study of neutrino oscillations comes to an end, a new chapter begins. The great progress in neutrino physics over the last few decades raises new questions and provides opportunities for major discoveries. Among the compelling issues today:

1) What is the value of θ_{13}, the mixing angle between first- and third-generation neutrinos for which, so far, experiments have only established limits? Determining the size of θ_{13} has critical importance not only because it is a fundamental parameter, but because its value will determine the tactics to best address many other questions in neutrino physics.

2) Do neutrino oscillations violate CP? If so, how can neutrino CP violation drive a matter-antimatter asymmetry among leptons in the early universe (leptogenesis)? What is the value of the CP violating phase, which is so far completely unknown? Is CP violation among neutrinos related to CP violation in the quark sector?

3) What are the relative masses of the three known neutrinos? Are they “normal,” analogous to the quark sector, ($m_3 > m_2 > m_1$) or do they have a so-called “inverted” hierarchy ($m_2 > m_1 > m_3$)? Oscillation studies currently allow either ordering. The ordering has important consequences for interpreting the results of neutrinoless double beta decay experiments and for understanding the origin and pattern of masses in a more fundamental way, restricting possible theoretical models.

4) Is θ_{23} maximal (45 degrees)? If so, why? Will the pattern of neutrino mixing provide insights regarding unification of the fundamental forces? Will it indicate new symmetries or new selection rules?

5) Are neutrinos their own antiparticles? Do they give rise to lepton number violation, or leptogenesis, in the early universe? Do they have observable laboratory consequences such as the sought-after neutrinoless double beta decay in nuclei?

6) What can we learn from observation of the intense flux of neutrinos from a supernova within our galaxy? Can we observe the neutrino remnants of all supernovae that have occurred since the beginning of time?

7) What can cosmic rays reveal about other astrophysical phenomena? Will we find localized cosmic sources of very-high-energy neutrinos?

8) What can neutrinos tell us about new physics beyond the Standard Model, dark energy, extra dimensions? Do sterile neutrinos exist?

6) ...supernova within our galaxy?

NOvA would see burst of 5000 events for a supernova at the center of the galaxy

~15min of data
With typical ~10s supernova signal
10ms time bins
3m OVERBURDEN
Questions for the future
As the first chapter in the study of neutrino oscillations comes to an end, a new chapter begins. The great progress in neutrino physics over the last few decades raises new questions and provides opportunities for major discoveries. Among the compelling issues today:

1) What is the value of θ_{13}, the mixing angle between first- and third-generation neutrinos for which, so far, experiments have only established limits? Determining the size of θ_{13} has critical importance not only because it is a fundamental parameter, but because its value will determine the tactics to best address many other questions in neutrino physics.

2) Do neutrino oscillations violate CP? If so, how can neutrino CP violation drive a matter-antimatter asymmetry among leptons in the early universe (leptogenesis)? What is the value of the CP violating phase, which is so far completely unknown? Is CP violation among neutrinos related to CP violation in the quark sector?

3) What are the relative masses of the three known neutrinos? Are they “normal,” analogous to the quark sector, ($m_3 > m_2 > m_1$) or do they have a so-called “inverted” hierarchy ($m_2 > m_1 > m_3$)? Oscillation studies currently allow either ordering. The ordering has important consequences for interpreting the results of neutrinoless double beta decay experiments and for understanding the origin and pattern of masses in a more fundamental way, restricting possible theoretical models.

4) Is θ_{23} maximal (45 degrees)? If so, why? Will the pattern of neutrino mixing provide insights regarding unification of the fundamental forces? Will it indicate new symmetries or new selection rules?

5) Are neutrinos their own antiparticles? Do they give rise to lepton number violation, or leptogenesis, in the early universe? Do they have observable laboratory consequences such as the sought-after neutrinoless double beta decay in nuclei?

6) What can we learn from observation of the intense flux of neutrinos from a supernova within our galaxy? Can we observe the neutrino remnants of all supernovae that have occurred since the beginning of time?

7) What can neutrinos reveal about other astrophysical phenomena? Will we find localized cosmic sources of very-high-energy neutrinos?

8) What can neutrinos tell us about new physics beyond the Standard Model, dark energy, extra dimensions? Do sterile neutrinos exist?

Reconstructed visible energy for NC sample

NOvA's granularity allows for clean neutral-current measurements facilitating searches for sterile neutrinos

Neutrino oscillations

In vacuum:

\[P(\nu_\mu \rightarrow \nu_e) = \left| 2U_{\mu 3}^* U_{e 3} \sin \Delta_{31} e^{-i\Delta_{32}} + 2U_{\mu 2}^* U_{e 2} \sin \Delta_{21} \right|^2 \]

\[\Delta_{32} \equiv \frac{1.27 \Delta m_{32}^2 [eV^2] L [km]}{E [GeV]} = \frac{1.27 \cdot 2.32 \times 10^{-3} \cdot 810}{2.1} \simeq 1.1 \]

For NOvA:

\[\Delta_{31} \equiv \frac{1.27 \Delta m_{31}^2 [eV^2] L [km]}{E [GeV]} \simeq \Delta_{32} \]

\[\Delta_{21} \equiv \frac{1.27 \Delta m_{21}^2 [eV^2] L [km]}{E [GeV]} = \frac{1.27 \cdot 7.58 \times 10^{-5} \cdot 810}{2.1} \simeq 0.04 \]

\[P(\nu_\mu \rightarrow \nu_e) \simeq \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{\text{sol}}} \right|^2 \]

\[= P_{\text{atm}} + P_{\text{sol}} + 2 \sqrt{P_{\text{atm}} P_{\text{sol}}} (\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta) \]

\[P_{\text{atm}} \equiv \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta_{31} \]

\[P_{\text{sol}} \equiv \cos^2 \theta_{23} \cos^2 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \]
Neutrino oscillations

In vacuum:

\[P(\nu_\mu \to \nu_e) = \left| 2U_{\mu 3}^* U_{e 3} \sin \Delta_{31} e^{-i\Delta_{32}} + 2U_{\mu 2}^* U_{e 2} \sin \Delta_{21} \right|^2 \]

\[\Delta_{32} \equiv \frac{1.27 \Delta m_{32}^2 [eV^2] L [km]}{E [GeV]} = \frac{1.27 \cdot 2.32 \times 10^{-3} \cdot 810}{2.1} \approx 1.1 \]

For NOvA:

\[\Delta_{31} \equiv \frac{1.27 \Delta m_{31}^2 [eV^2] L [km]}{E [GeV]} \approx \Delta_{32} \]

\[\Delta_{21} \equiv \frac{1.27 \Delta m_{21}^2 [eV^2] L [km]}{E [GeV]} = \frac{1.27 \cdot 7.58 \times 10^{-5} \cdot 810}{2.1} \approx 0.04 \]

\[P(\nu_\mu \to \nu_e) \approx \left| \sqrt{P_{atm}} e^{-i(\Delta_{32}+\delta)} + \sqrt{P_{sol}} \right|^2 \]

\[= P_{atm} + P_{sol} + 2\sqrt{P_{atm}P_{sol}} \left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta \right) \]

\[P_{atm} \equiv \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta_{31} \quad \text{long baseline experiments measure this combination} \]

\[P_{sol} \equiv \cos^2 \theta_{23} \cos^2 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \]
Neutrino oscillations

In vacuum:

\[P(\nu_\mu \to \nu_e) = |2U_{\mu 3}^* U_{e 3} \sin \Delta_{31} e^{-i\Delta_{32}} + 2U_{\mu 2}^* U_{e 2} \sin \Delta_{21}|^2 \]

\[\Delta_{32} \equiv \frac{1.27 \Delta m_{32}^2 \text{[eV}^2\text{]} L \text{[km]}}{E \text{[GeV]}} = \frac{1.27 \cdot 2.32 \times 10^{-3} \cdot 810}{2.1} \approx 1.1 \]

For NOvA:

\[\Delta_{31} \equiv \frac{1.27 \Delta m_{31}^2 \text{[eV}^2\text{]} L \text{[km]}}{E \text{[GeV]}} \approx \Delta_{32} \]

\[\Delta_{21} \equiv \frac{1.27 \Delta m_{21}^2 \text{[eV}^2\text{]} L \text{[km]}}{E \text{[GeV]}} = \frac{1.27 \cdot 7.58 \times 10^{-5} \cdot 810}{2.1} \approx 0.04 \]

\[P(\nu_\mu \to \nu_e) \approx |\sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{\text{sol}}}|^2 \]

\[= P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}P_{\text{sol}}} (\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta) \]

\[P_{\text{atm}} \equiv \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \Delta_{31} \]

\[P_{\text{sol}} \equiv \cos^2 \theta_{23} \cos^2 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \]

long baseline experiments measure this combination

“−” : \(\nu \)

“+” : \(\bar{\nu} \)
Neutrino oscillations

In matter:

\[P(\nu_\mu \rightarrow \nu_e) \simeq |\sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{\text{sol}}}|^2 \]

\[= P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} \left(\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta \right) \]

\[\sqrt{P_{\text{atm}}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \]

\[\sqrt{P_{\text{sol}}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21} \]

\[a = GF N_e / \sqrt{2} \simeq \frac{1}{3500 \text{ km}} \]

\[aL = 0.08 \text{ for } L = 295 \text{ km} \]

\[aL = 0.23 \text{ for } L = 810 \text{ km} \]
Neutrino oscillations

In matter:

\[
\begin{align*}
P(\nu_\mu \to \nu_e) & \simeq |\sqrt{P_{\text{atm}}} e^{-i(\Delta_{32}+\delta)} + \sqrt{P_{\text{sol}}}|^2 \\
& = P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}} P_{\text{sol}}} (\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta)
\end{align*}
\]

\[
\sqrt{P_{\text{atm}}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31}
\]

\[
\sqrt{P_{\text{sol}}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21}
\]

\[
a = G_F N_e / \sqrt{2} \simeq \frac{1}{3500 \text{ km}} \quad aL = 0.08 \text{ for } L = 295 \text{ km} \]

dependence on relative sign of Δ_{31} and a

\[
aL = 0.23 \text{ for } L = 810 \text{ km}
\]
Neutrino oscillations

In matter:

\[P(\nu_\mu \rightarrow \nu_e) \simeq \left| \sqrt{P_{\text{atm}}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{\text{sol}}} \right|^2 \]

\[= P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}P_{\text{sol}}} (\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta) \]

\[\sqrt{P_{\text{atm}}} = \sin \theta_{23} \sin 2\theta_{13} \sin(\Delta_{31} - aL) \Delta_{31} \]

\[\sqrt{P_{\text{sol}}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{(aL)} \Delta_{21} \]

\[a = G_F N_e / \sqrt{2} \simeq \frac{1}{3500 \text{ km}} \]

\[aL = 0.08 \text{ for } L = 295 \text{ km} \]

\[aL = 0.23 \text{ for } L = 810 \text{ km} \]
Using a muon neutrino beam, we have two basic observables
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ for anti-neutrinos
We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.
Using a muon neutrino beam, we have two basic observables:
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ for anti-neutrinos

We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$
$\Delta m^2_{31} > 0$ ("Normal hierarchy")

$\delta_{\text{CP}} = 0$

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables:
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ for anti-neutrinos

We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$
$\Delta m^2_{31} > 0$ ("Normal hierarchy")

$\delta_{CP} = 0, \nabla \pi/2$

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables:
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ for anti-neutrinos

We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$

$\Delta m_{23}^2 > 0$ ("Normal hierarchy")

$\delta_{CP} = 0, \nabla \pi/2, \bullet \pi$

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables:
1. $P(\nu_\mu \to \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \to \nu_e)$ for anti-neutrinos

We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$
$\Delta m^2_{31} > 0$ ("Normal hierarchy")

$\delta_{CP} = 0, \nabla \pi/2, \bullet \pi, \triangle 3\pi/2$

Principle of the NOvA Experiment

$L = 810 \text{ km}, E = 2 \text{ GeV}$
Using a muon neutrino beam, we have two basic observables
1. $P(\nu_\mu \to \nu_e)$ for neutrinos
2. $P(\nu_\mu \to \bar{\nu}_e)$ for anti-neutrinos
We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$
$\Delta m^2_{31} > 0$ ("Normal hierarchy")

$\delta_{CP} = 0, \nabla \pi/2, \bullet \pi, \triangle 3\pi/2, 2\pi$

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables

1. \(P(\nu_\mu \rightarrow \nu_e)\) for neutrinos
2. \(P(\overline{\nu}_\mu \rightarrow \nu_e)\) for anti-neutrinos

We can plot these two observables as a function of the remaining unknowns \(\theta_{13}, \delta_{\text{CP}},\) and mass hierarchy.

\[\theta_{13} = 15^\circ\]
\[\Delta m_{31}^2 > 0 \text{ ("Normal hierarchy")}\]
\[\Delta m_{31}^2 < 0 \text{ ("Inverted hierarchy")}\]
\[\delta_{\text{CP}} = 0, \nabla\pi/2, \bullet \pi, \blacktriangle 3\pi/2, 2\pi\]

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables:
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \nu_e)$ for anti-neutrinos
We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$
$\Delta m^2_{31} > 0$ ("Normal hierarchy")
$\Delta m^2_{31} < 0$ ("Inverted hierarchy")
$\delta_{CP} = 0, \nabla \pi/2, \bullet \pi, \bigtriangleup 3\pi/2, 2\pi$

Perfect measurements of the two oscillation probabilities answer all remaining questions if θ_{13} is large enough.

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables
1. \(P(\nu_\mu \rightarrow \nu_e) \) for neutrinos
2. \(P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \) for anti-neutrinos
We can plot these two observables as a function of the remaining unknowns \(\theta_{13}, \delta_{\text{CP}} \), and mass hierarchy.

\[\theta_{13} = 15^\circ \]
\[\Delta m^2_{31} > 0 \ ("\text{Normal hierarchy}"") \]
\[\Delta m^2_{31} < 0 \ ("\text{Inverted hierarchy}"") \]
\[\delta_{\text{CP}} = 0, \nabla \pi/2, \bullet \pi, \Delta 3\pi/2, 2\pi \]

Perfect measurements of the two oscillation probabilities answer all remaining questions if \(\theta_{13} \) is large enough.

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ for anti-neutrinos
We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$
$\Delta m^2_{31}>0$ ("Normal hierarchy")
$\Delta m^2_{31}<0$ ("Inverted hierarchy")
$\delta_{CP} = 0, \nabla \pi/2, \bullet \pi, \blacktriangle 3\pi/2, 2\pi$

Perfect measurements of the two oscillation probabilities answer all remaining questions if θ_{13} is large enough.
Using a muon neutrino beam, we have two basic observables
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ for anti-neutrinos
We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ$
$\Delta m^2_{31} > 0$ ("Normal hierarchy")
$\Delta m^2_{31} < 0$ ("Inverted hierarchy")
$\delta_{\text{CP}} = 0, \downarrow \pi/2, \bullet \pi, \uparrow 3\pi/2, 2\pi$

Perfect measurements of the two oscillation probabilities answer all remaining questions if θ_{13} is large enough.

For small θ_{13} there are inherent ambiguities between hierarchy choice and δ_{CP}. However, even in these cases we learn something about δ_{CP}.

Principle of the NOvA Experiment
Using a muon neutrino beam, we have two basic observables:
1. $P(\nu_\mu \rightarrow \nu_e)$ for neutrinos
2. $P(\bar{\nu}_\mu \rightarrow \nu_e)$ for anti-neutrinos

We can plot these two observables as a function of the remaining unknowns θ_{13}, δ_{CP}, and mass hierarchy.

$\theta_{13} = 15^\circ, 10^\circ$
$\Delta m^2_{31} > 0$ ("Normal hierarchy")
$\Delta m^2_{31} < 0$ ("Inverted hierarchy")
$\delta_{CP} = 0, \nabla \pi/2, \bullet \pi, \Delta 3\pi/2, 2\pi$

Perfect measurements of the two oscillation probabilities answer all remaining questions if θ_{13} is large enough.

For small θ_{13} there are inherent ambiguities between hierarchy choice and δ_{CP}. However, even in these cases we learn something about δ_{CP}.
Using a muon neutrino beam, we have two basic observables
1. \(P(\nu_\mu \rightarrow \nu_e) \) for neutrinos
2. \(P(\nu_\mu \rightarrow \bar{\nu}_e) \) for anti-neutrinos
We can plot these two observables as a function of the remaining unknowns \(\theta_{13}, \delta_{\text{CP}} \), and mass hierarchy.

\[\theta_{13} = 15^\circ, 10^\circ, 5^\circ \]
\[\Delta m_{23}^2 > 0 \text{ ("Normal hierarchy")} \]
\[\Delta m_{23}^2 < 0 \text{ ("Inverted hierarchy")} \]
\[\delta_{\text{CP}} = 0, \ \nabla \pi/2, \ \pi, \ \Delta 3\pi/2, \ 2\pi \]

Perfect measurements of the two oscillation probabilities answer all remaining questions if \(\theta_{13} \) is large enough.

For small \(\theta_{13} \) there are inherent ambiguities between hierarchy choice and \(\delta_{\text{CP}} \). However, even in these cases we learn something about \(\delta_{\text{CP}} \).
Resolution of the mass hierarchy
Begin study of δ_{CP}

We will learn if affects of CP phase and mass hierarchy go in same direction (upper half plane for normal hierarchy case) or in opposite directions.
Combining NOvA with T2K in worst case

As NOvA runs both neutrinos and antineutrinos its contours are relatively straight. T2K’s contours trace an “S” which intersects NOvA’s contours in the lower part of the plot.
Combining NOvA with T2K

On the left we assume nominal T2K and NOvA runs. This constrains the CP phase to the lower half plane (1 sigma), but leaves the hierarchy unresolved. Increasing the statistics to each experiment by 3x resolves the hierarchy.
$\nu_\mu \rightarrow \nu_\mu$ Channel

Precision θ_{23} and Δm^2_{32} measurements

Oscillations applied using $\Delta m^2_{32} = 2.35 \times 10^{-3}$ eV2, $\sin^2 2\theta_{23} = 1.0$
\(\nu_\mu \rightarrow \nu_\mu \) Channel

Precision \(\theta_{23} \) and \(\Delta m^2_{32} \) measurements

- Energy resolution (determined from simulations) is 4% for \(\nu_\mu \)-CC quasi-elastic events
- 10% absolute energy scale uncertainty fitted as nuisance parameter; constrained by narrow-band beam
- ~0 backgrounds due to detector performance and narrow-band beam

\(\nu_\mu + \bar{\nu}_\mu \) Quasielastic CC Events

Left Panel:
- 18x10\(^{20}\) POT \(\nu \) Run
- 18x10\(^{20}\) POT \(\bar{\nu} \) Run
- 14 kton Fiducial
- \(\sin^2(2\theta) = 1.00 \)
- \(\sin^2(2\theta) = 0.94 \)

Right Panel:
- 18x10\(^{20}\) POT \(\nu \) Run
- 18x10\(^{20}\) POT \(\bar{\nu} \) Run
- 14 kton Fiducial
- \(\Delta m^2 = 2.27 \times 10^{-3} \text{eV}^2 \)
- \(\Delta m^2 = 2.35 \times 10^{-3} \text{eV}^2 \)
- \(\Delta m^2 = 2.46 \times 10^{-3} \text{eV}^2 \)
$\nu_\mu \rightarrow \nu_\mu$ Channel

Precision θ_{23} and Δm^2_{32} measurements

![Graph showing the relationship between Δm^2_{23} and $\sin^2(2\theta_{23})$ for different data sets and their precision.](image-url)
$\nu_\mu \rightarrow \nu_\mu$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ MINOS Results

MINOS Results

2% probability these are compatible.
The combination of the NuMI medium horn position and off-axis kinematics gives a relatively pure antineutrino beam.

Neutrino and antineutrino rates
\(\nu_\mu \rightarrow \nu_\mu \) and \(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu \) Channels

Do \(\nu_\mu \) and \(\bar{\nu}_\mu \) oscillate the same way?

Left: \(\nu_\mu \)-CC and \(\nu_\mu \)-CC spectra before and after oscillations.

Right: Zoom of the oscillated \(\nu_\mu \)-CC and \(\nu_\mu \)-CC spectra.

\(\nu_\mu \) oscillations use \((\Delta m^2, \sin^2 2\theta) = (2.35 \text{ meV}^2, 1.00) \)

\(\nu_\mu \) oscillations use \((\Delta m^2, \sin^2 2\theta) = (3.36 \text{ meV}^2, 0.86) \)
\(\nu_\mu \rightarrow \nu_\mu\) and \(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu\)

- Top: NOvA result after two years (one year in neutrinos, one year in antineutrinos)

- Bottom: Full 6 year run, 3+3 years in neutrinos + antineutrinos.

- If MINOS central values are correct, NOvA will establish the difference with 3 \(\sigma\) significance in 2 years, 5 \(\sigma\) in 6 years
θ_{23} Quadrant: NOvA + Reactor

\[\nu_3 = ? \]

\[\theta_{23} = 40^\circ \quad \theta_{23} = 50^\circ \]

- Long baseline experiments measure \(\sin^2 2\theta_{23} \) using the \(\nu_\mu \rightarrow \nu_\mu \) channel and \(2\sin^2 \theta_{23}\sin^2 2\theta_{13} \) using \(\nu_\mu \rightarrow \nu_e \)
- Reactor experiments measure \(\sin^2 2\theta_{13} \) using \(\nu_e \rightarrow \nu_e \)
- The combination allows measurement of \(\sin^2 \theta_{23} \) and \(\sin^2 2\theta_{23} \) separately resolving the octant of the angle \(\theta_{23} \) answering the question of whether \(\nu_3 \) has more muon or tau content
The NOvA Detectors

- 14-18 kton far detector
- 220 ton near detector
357,120 total channels
Block Pivoter

- High Voltage Supply
- Refrigeration Units
- Low Voltage Supply Racks
- West Walkways
- Adhesive Fumes Exhaust
- Assembly Walkways Around Pivoter
- Overall View Looking SW
- Pivot
- Pivot Vertical
- Rolling Platform
- Work Platform
Experiment progress:

Far detector laboratory complete

After many years of looking at this. We can now look at this...
Experiment progress: Far detector laboratory complete

Beneficial occupancy of Ash River laboratory on April 13, 2011
Experiment progress:
Far detector laboratory complete

Inside the detector enclosure looking south
Experiment progress:
Far detector assembly area

Block assembly area
Experiment progress:

Scintillator and fiber

Scintillator

- Mineral oil contract in place
 - Have contract for fixed price for crude oil in range $60-$110 bbl, indexed outside this range. At $111 bbl price would be 22% higher than the fixed price; we continue to have 30% assigned contingency.
 - Taken delivery of first 164,000 gal of 3.2 million gallons required

- Pseudocumene contract in place
 - Price indexed to Asian naptha (crude oil)
 - 155,000 gallons required (22 ISO tanks)

- Wave shifters in hand

- Blending PO has been issued
 - Fixed price of $0.67/gal + $600K of setup
 - Test batch of 30,000 gallons blended and in use by near detector prototype

WLS fibers

- 5,400 km delivered and tested; 12,000 km required
- Kuraray continues to deliver on schedule despite earthquake and tsunami
Experiment progress:

PVC extrusions

- **Contracts in place for**
 - PVC resin for fixed price of $1 / lb
 - Extruding for fixed price of $0.96 / lb

- **Produced 1184 extrusions** for far detector which meet spec’s; 23,000 required

- **Production currently running at 50% full rate.** Study time used to improve:
 - **Knitting:** There are ~70 points in the extrusion where two streams of melted resin merge and must “knit” together. Adjustments to die, flow rate, mixing, and melt temperature are likely to improve these joints.

 - **Reflectivity:** Vendor has sent several batches with unacceptably high fractions of rutile TiO₂; we require anatase which has better reflectivity. Working with vendor to ensure <2% rutile on all future shipments.

- **Plan to use thick walled extrusions only**
 - Original plan was to use thick for vertical planes and thin for horizontal
 - Having only thick simplifies construction, strengthens the detector, and expedites filling
 - Active fraction reduced from 71% to 66%
Experiment progress:
PVC modules

- Two 16-cell extrusions are assembled into 1 32-cell module at U. Minnesota factory. Fibers installed and routed, ends sealed.

- Two 16-cell extrusions are assembled into 1 32-cell module at U. Minnesota factory. Fibers installed and routed, ends sealed.

- Factory moved to large warehouse for far detector production.

- Much work has gone into understanding and redesigning the manifold cover which developed cracks on the prototype. New design is stronger and eliminates all stress concentrators. First parts expected in July.
Experiment status:

Assembly

• Prototype pivoter is completed and tested (pictured at right)
• Ash River pivoter is under construction.
• 5 outfitting workshops held in past 6 months to refine plans in light of experience with prototype detector
• Detector structure modified to be simpler and stronger by opting to use only a single style of PVC extrusion. Safety factor increased from 1.3 to 3.1 which allows for immediate filling of blocks with scintillator.
• Planning to have first block in place and filled prior to March 2012 shutdown
Near Detector On Surface (NDOS)

- Designed to prototype all detector systems prior to installation at Ash River as a full end-to-end test of systems integration and installation
- 2 modules wide by 3 modules high by 6 blocks long. Far detector is 12×12×30. NDOS mocks up upper corner of far detector ~exactly.
- Installation completed May 9, 2011.
- Commissioning and data collection on going 11/2010 - present
NDOS location

• Located in two neutrino beams providing an early look at data and a chance to tune up DAQ, calibration, reconstruction, and analysis prior to first data from Ash River

• NDOS is located directly above the NuMI neutrino beam line and is oriented parallel to the NuMI beamline. It sees neutrinos at an off-axis angle of 110 mrad.

• NDOS is located ~on the Booster Neutrino Beam (BNB) line, but the detector axis is rotated 23° with respect to the BNB beamline
NuMI Beam
- In neutrino running kaon decays produce a peak at 2 GeV - a good match to the 2 GeV peak from pion decay at 14 mrad to be used in experiment.
- In antineutrino beam, the wrong-sign contamination washes the 2 GeV peak out.
- We’ve taken 5.6E19 POT in antineutrino mode and 8.4E18 POT in neutrino mode.

BNB Beam
- Peaks at 700 MeV
- We’ve taken 2.7E19 POT in antineutrino mode
NuMI Events In NDOS

LE = Low Energy target position
HE = High Energy target position
RHC = Reverse horn current (antineutrinos)
FHC = Forward horn current (neutrinos)

12/15/2010
6/1/2011

Protons on Target (×10^{18})

LE/RHC
LE/FHC
Horn Off
HE/FHC

Events in NOvA NDOS

0
10
20
30
40
50
60
70
80
90
100
110
120

39.5/10^{18}
4.9/10^{18}
22.9/10^{18}
23.9/10^{18} POT

200
400
600
800
1000
1200

0
6/1/2011

18
10

NuMI events

- See NuMI beam at off-axis angle of 110 mrad
- Recorded 1001 events in antineutrino mode (69 cosmic background)
- Recorded 253 events in neutrino mode (39 cosmic background)
proton track
(dE/dx rise at end point)

NOvA NDOS NuMI Data

v_\mu quasi-elastic candidate
NOvA NDOS NuMI Data

$\nu_\mu + N \rightarrow N' + \nu_\mu + \pi^0 + \pi^0$

candidate
NuMI neutrinos
Track length comparisons

Comparisons of the track length distributions for fully-contained events in antineutrino (left) and neutrino (right) NuMI beam. Data and simulation are normalized to protons on target.
• NDOS is located on Booster Neutrino Beam (BNB) axis, rotated with respect to the beam by 23°
• Recorded 2.7x10^{19} protons on target. First event recorded on 12/24/2010. Last event in this sample recorded on 5/22/2010.
• 222 events on a background of 92 cosmic ray backgrounds. 5 ν’s / 10^{18} POT.
Cosmic rays in NDOS
Using cosmic rays:
Cell-by-cell calibration

- Top left: Path length-corrected muon response for different distances from fiber end for a single example cell
- Above: Measured and fitted fiber attenuation for the example cell
- Bottom left: Muon response after attenuation corrections
Using cosmic rays:

Michel electron calibration

\[
\chi^2 / \text{ndf} = 169.7 / 303
\]

- Normalization = 5696 ± 87.8
- Muon lifetime [usec] = 2.139 ± 0.013
- Constant background = 1.173 ± 0.091

Random coincidences

These are clusters that are matched to muons recorded 20 seconds prior to event.
NDOS lessons learned

- NDOS has allowed us to work out numerous installation and integration issues; accessibility of hardware components, interference between various hardware components, etc. etc.

- A few major issues that NDOS has highlighted and allowed to address
 - Manifold cracks - Cracks were found to open up in manifold cover. Part redesigned to eliminate stress concentrations and strengthened
 - APD/FEB noise - Interference between thermal electric cooler control circuit produced too much noise. Added capacitive coupling to heat sink.
 - APD installation - Under real detector installation conditions it is very difficult to keep the silicon face of the APDs sufficiently clean. Hammamatsu has developed a coating which meets our specifications. It has also proved difficult to keep the APDs sealed against the environment. Redesign of these seals in progress.
APD installation

APD and carrier board attached to spacer

APD attached to heat sink

APD assembly attached to front end board which is preinstalled on the detector
Ideas for NOvA contingency use

<table>
<thead>
<tr>
<th>Summary</th>
<th>Cost</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebuild near detector</td>
<td>Rebuild the near detector to match the far detector geometry and apply lessons learned from prototype detector.</td>
<td>$5M</td>
</tr>
<tr>
<td>Test beam module</td>
<td>Construct a small NOvA test beam module to measure response to e/π/μ in a test beam.</td>
<td>$<1M</td>
</tr>
<tr>
<td>Additional far detector mass</td>
<td>Add 16th, 17th, 18th kiloton to the far detector. Improves statistics but not systematics.</td>
<td>$9M/kt</td>
</tr>
<tr>
<td>Wider near detector</td>
<td>A wider near detector will improve containment of EM showers and π⁰ events and sample a large range of off-axis angles allowing in situ studies of neutrino flux extrapolation. Incurs some excavation risk as pillar separating NOvA and MINOS halls is stressed.</td>
<td>$2-3M</td>
</tr>
<tr>
<td>SciNOvA</td>
<td>A 15 ton fine grained detector to be placed in front of NOvA. Would allow for in situ studies of backgrounds and cross-section measurements at 2 GeV.</td>
<td>~$3M</td>
</tr>
<tr>
<td>Additional cavern further off-axis</td>
<td>A new cavern to house the current prototype. The cavern would access off-axis angles of up to 24 mrad where the neutrino spectrum peaks at 1.5 GeV. Could allow for study of oscillations at L/E = 1 km/GeV using fixed L and varying E as well as cross-section studies in the 1-2 GeV range.</td>
<td>~$3M</td>
</tr>
<tr>
<td>2 km detector</td>
<td>Not being considered as part of the NOvA project but rather a new experiment to study the LSND effect. A microBooNE-style detector placed in NuMI at ~2 km + Project-X can cover the whole LSND range at 5σ.</td>
<td>$30+M</td>
</tr>
</tbody>
</table>
SciNOvA

- SciNOvA is an idea to rebuild the SciBar detector used by K2K and SciBooNE and deploy it in front of NOvA near detector.
- Main motivation is to allow an in situ check of NOvA backgrounds by sampling the same beam using very similar target material, but with higher granularity. Can nearly eliminate the need for Monte Carlo estimates of instrumental background rates.
- Also enables cross-section measurements in a narrow band beam at 2 GeV
New cavern further off-axis

• If the MiniBooNE/LSND antineutrino signal is real and due to oscillations, those oscillations will develop downstream of the NOvA near detector
 ‣ MiniBooNE/LSND signal is in the range of $0.4 < L/E < 1.2$ km/GeV
 ‣ NOvA near detector is at $L/E = 0.4$ km/GeV.
 ‣ Placing an additional NOvA near detector further off-axis (~24 mrad), reducing the beam energy to 1.5 GeV, NOvA can achieve an L/E of ~1 km/GeV
 ‣ To get beam at 24 mrad would require a new cavern which could house the prototype detector we are now operating.

• Presented at Short Baseline workshop by John Cooper
Possible new cavern at 24 mrad

\[\langle E \rangle = 1 - 1.5 \text{ GeV}, \frac{L}{E} = 0.6 - 1 \text{ km/GeV} \]

\[\langle E \rangle = 2 \text{ GeV}, \frac{L}{E} = 0.4 \text{ km/GeV} \]
Possible signals in a new cavern

454 excess events

269 excess events

3σ & 5σ sensitivity

statistics only
Beyong NOvA:
Using NuMI at 2 km to test LSND / MiniBooNE

Not part of NOvA, but a new idea for possible future use of NuMI. NuMI has several advantages over Booster beam: high power (700 kW vs 11 kW), relatively low wrong-sign contamination in antineutrino beam.
Locate a 100 kW cyclotron in assembly building to produce $\bar{\nu}_e$ from muon decay at rest

Short-baseline Neutrino Oscillation Waves in Ultra-large Liquid Scintillator Detectors

Sanjib Kumar Agarwallaa, J.M. Conradb, M.H. Shaevitzc

a Instituto de Física Corpuscular, CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia, Spain

b Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

c Department of Physics, Columbia University, New York, New York 10027, USA
Summary

• NOvA addresses 7 of P5’s 8 “compelling issues” in neutrino physics

• Far detector construction is underway.
 ‣ Far detector laboratory complete
 ‣ NuMI upgrades begin in March of 2012
 ‣ Plan to have first far detector block in place by then
 ‣ Commissioning of 700 kW beam begins in 2013 with ~5 kt of far detector in place
 ‣ 15 kt complete by end of 2013

• Prototype near detector operational on surface at Fermilab
 ‣ Extremely valuable preparation for construction at Ash River
 ‣ Early look at real cosmic rays and neutrinos