Neutrinoless Double-Beta Decay and the MAJORANA Experiment

Vincente E. Giuseppe
Los Alamos National Laboratory

for the MAJORANA Collaboration
Outline

- Double-Beta Decay
- The MAJORANA Experiment
- The Initial MAJORANA Module
- Backgrounds and Background Rejections
- Detectors
- Recent Progress and Plans
Two Neutrino Double-Beta Decay

- **An allowed nuclear physics process**
 - Can occur when single β decay not allowed
 - Lepton number is conserved
 - Observed in a number of isotopes

\[2^{-} \quad _{76}^{2-}\text{As} \]

\[0^{+} \quad _{76}^{0^{+}}\text{Ge} \]

\[\beta \beta \quad Q = 2.039 \text{ MeV} \]

\[2^{+} \quad _{76}^{2^{+}}\text{Se} \]

\[0^{+} \quad _{76}^{0^{+}}\text{Se} \]
Two Neutrino Double-Beta Decay

- An allowed nuclear physics process
 - Can occur when single β decay not allowed
 - Lepton number is conserved
 - Observed in a number of isotopes

\[
\begin{align*}
\text{76 Ge} & \rightarrow 76\, \text{Se} + 2e^- + 2\bar{\nu}_e \\
\text{76 Ge} & \rightarrow 76\, \text{Se} + 2\bar{\nu}_e + 2e^- \\
\end{align*}
\]
Neutrinoless Double-Beta Decay

- No neutrinos emitted
- Discovery provides:
 - Neutrino is own antiparticle (Majorana)
 - Lepton number violation
 - Neutrino mass

\[76 \text{Ge} \Rightarrow 76 \text{Se} + 2e^- \]

\[n \Rightarrow p + e^- + \bar{\nu}_e \quad (RH \bar{\nu}_e) \]

\[(LH \nu_e) \quad \nu_e + n \Rightarrow p + e^- \]
How to Measure $\beta\beta$

Observe double-beta decay by collecting the energy of the 2 e^- in a detector
How to Measure $\beta\beta$

Observe double-beta decay by collecting the energy of the 2 e^- in a detector

- With 2 neutrino double-beta decay, the electrons share the decay energy with the neutrinos

\[
\frac{dN}{dE} \quad \text{Endpoint} \quad \text{Energy} \\
Q = 2.039 \text{ MeV}
\]
How to Measure $\beta\beta$

Observe double-beta decay by collecting the energy of the 2 e^- in a detector

- With 2 neutrino double-beta decay, the electrons share the decay energy with the neutrinos
- With neutrinoless double-beta decay, the electrons carry the full decay energy

Energy distribution with 2ν and 0ν modes. The endpoint energy $Q=2.039$ MeV.
How $\beta \beta$ Relates to the Neutrino

Measure decay rate of to get neutrino absolute mass scale

$$\Gamma_{0\nu} = G_{0\nu} |M_{0\nu}|^2 \langle m_\nu^2 \rangle$$

- G are calculable phase space factors
- M are nuclear physics matrix elements
 - Hard to calculate
- m_ν is the effective Majorana mass

Endpoint Energy $Q=2.039$ MeV
A Ge Detector Can Detect $\beta\beta$

Ge detectors are commercially available radiation spectroscopy detectors.
The MAJORANA Approach to $\beta\beta$

Ge crystal
The MAJORANA Approach to $\beta\beta$

Ge crystal

Low mass mount
The **MAJORANA Approach to $\beta\beta$**

- **Ge crystal**
- **Array inside cryostat**
- **Low mass mount**
The MAJORANA Approach to $\beta\beta$

- Ge crystal
- Array inside cryostat
- Shield
- Low mass mount
MAJORANA Favors ^{76}Ge

^{76}Ge offers an excellent combination of capabilities & sensitivities.

- **Ge is the source & detector**
 - maximizes source to total mass ratio
 - Well-understood technologies
 - Excellent energy resolution: 0.16% at 2.039 MeV, 4-keV ROI
 - Advantage for improving signal to background
 - Existing, well-characterized large Ge arrays

- **Demonstrated ability to enrich 7.44% to 86%**

- **Favorable nuclear matrix element**
 - e.g. $<M_{0\nu}> = 3.9$ [Rodin et al. 2005, erratum], 2.6 [Caurier et al. 2007]

- **Slow $2\nu\beta\beta$ rate ($T_{1/2} = 1.4 \times 10^{21} \text{ y}$)**

- **Powerful background rejection technologies**
 - Segmentation, granularity, timing, pulse shape discrimination

- **Best current limit on $0\nu\beta\beta$ used Ge**
 - IGEX & Heidelberg-Moscow $T_{1/2} > 1.9 \times 10^{25} \text{ y}$
Actively pursuing R&D aimed at a \(~1\) tonne scale \(^{76}\text{Ge}\) \(0\nu\beta\beta\)-decay experiment

- Technical Goal: Demonstrate background low enough to justify building a ton-scale experiment
- Science Goal: Build a prototype module to test the recent claim of an observation of \(0\nu\beta\beta\)
- Work cooperatively with the GERDA Collaboration to prepare for a single international ton-scale Ge experiment that combines the best technical features of MAJORANA and GERDA
- Pursue longer term R&D to minimize costs and optimize the schedule for a ton-scale experiment
Goal is to achieve ultra-low backgrounds of less than 1 count per ton of material per year in the Region of Interest (ROI) about the $\beta\beta(0\nu)$ Q-value energy.
Evaluate MAJORANA Design with Initial Module

R&D Reference Design

- **60 kg of Ge crystals**
 - 30 kg of 86% enriched ^{76}Ge crystals
 - to test claim of $0\nu\beta\beta$
 - Additional 30 kg of natural Ge or depleted in ^{76}Ge
 - for background sensitivity
- Examine detector technology options
 - Emphasis on p-type point-contact (PPC) detectors,
 - Additional physics with low-energy (~100 eV) threshold

- **Low-background cryostat and shielding**
 - Ultra-clean, electro-formed Cu cryostats
 - Early implementation with first (of 3) cryostat with nat-Ge PPC detectors
 - Compact low-background passive Cu and Pb shield with active muon veto

- **Agreement to locate at 4850’ level (4200 m.w.e) at Sanford Lab/ (future home of DUSEL)**
Prototype Module Probes to 200 meV

- **Expected Sensitivity to $0\nu\beta\beta$**
 - for 30 kg enriched material, running 3 years, or 78 kg-yr of ^{76}Ge exposure
 - $T_{1/2} \geq 1.0 \times 10^{26}$ yr (90\% CL) Sensitivity to $\langle m_\nu \rangle < 140$ meV (90\% CL) [Rod06 erratum] RQRPA NME

![Graph showing sensitivity versus live time](image)
MAJORANA Must Achieve Low Background

The key of the MAJORANA design is the ability to reduce backgrounds to unprecedented levels

- **Advanced Detector Design**
 - allow greater signal processing
 - reduce sensitivity to backgrounds
 - allow multi-dimensional event reconstruction

- **Controlling intrinsic and external backgrounds**
 - Ultra-clean, electro-forming of cryostat and shield
 - Detector purity
Majorana Backgrounds

- **Goal:** ≤1 event / ton-year in 4 keV ROI
- **Backgrounds:**
 - Natural isotope chains: 232Th, 235U, 238U, Rn
 - Cosmic Rays:
 - Activation at surface creates 68Ge, 60Co.
 - Hard neutrons from cosmic rays in rock and shield.
 - $(n,n'\gamma)$ in Pb, Ge, Cu
 - $2\nu\beta\beta$-decays.
- **Need factor ~100 reduction over what has been demonstrated.**
- **Monte Carlo estimates of acceptable levels**

Most backgrounds are multi-site. Signal is single-site
MAJORANA Materials

• 2009 campaign to further reduce limits on backgrounds in electroformed Cu (previous best: $\sim0.7 \, \mu \text{Bq/kg}$, addressing bath purity)

• Procuring enough plastic for detector supports, with NAA to follow

• Staged Pb procurement with ICPMS program for shield

• Cables and electronics materials screening

• Enriched Ge
 - UMICORE not interested in processing enriched Ge
 - Fully costed plan to establish a small processing facility in Oak Ridge
 - Collaborator has funding to start an underground crystal pulling lab
Electroforming Cu
Background Rejection Techniques Exist

Pulse Shape Analysis

Single-site event

Multi-site event
Background Rejection Techniques Exist

Pulse Shape Analysis

Single-site event

Multi-site event

Timing Analysis

- $^{68}\text{Ga} \beta^+$ can deposit single-site at Q-value
- Look back in time for X-ray from ^{68}Ge

V. E. Guiseppe

INFO 09 - Santa Fe
Detector Design Aids in Background Rejection

Segmentation Analysis

- Multi-site depositions occur over many segments
- Single-site deposition in one segment
Detector Design Aids in Background Rejection

Segmentation Analysis

- Multi-site depositions occur over many segments
- Single-site deposition in one segment
- Proximity of additional detectors pick up escaping events
• An exciting novel P-type Ge detectors design.
• A solid p-type detector: simpler to fabricate, easier handle, instrument, very low capacitance.
• The longer drift distance in the PPC stretches the pulse leading to a clear indication of a multiple site event.
• Advantage of segmented detectors, without extra complexity and backgrounds.
• Low energy threshold permits additional physics applications: e.g. Dark Matter, Axions
P-type Point Contact Detectors

Rising edge “stretched” in time \Rightarrow \text{improved PSD}

Barbeau et al., JCAP 09 (2007) 009
arXiv:0807.0879v4 CoGeNT Collaboration
Segmented N-type Detectors

- Segmented Enriched Germanium Assembly detector
 - Crystal description
 - N-type ^{76}Ge detector (86%)
 - 12 segments - 6 outer X 2 inner
 - Currently in temporary cryostat
 - Segmentation studies
 - Pulse shape analysis techniques
 - Currently electro-forming detector mount components
 - Deploy at WIPP late 2009
Lower Sensitivity - New Backgrounds

Pb excitations

- Specific Pb gamma rays are problematic backgrounds
 - ^{206}Pb has a 2041-keV γ ray
 - ^{207}Pb has a 3062-keV γ ray
 - ^{208}Pb has a 3060-keV γ ray

- The DEP of the ~3062 keV γ ray is a single site energy deposit at $\beta\beta$ Q-value

- Neutron interactions in Pb can excite these levels

- Cross sections unknown
Measured gamma-ray production cross sections from a Pb target in a neutron beam at LANSCE

\[\text{nat} \text{Pb}(n,xn\gamma)^{206}\text{Pb} \ 2041 \text{ keV} \]

\[\text{nat} \text{Pb}(n,xn\gamma)^{207,208}\text{Pb} \ 3062 \text{ keV} \]

Other cross sections in Cu and Ge being measured

V.E. Guiseppi et al. (2009) PRC 79, 054604

V. E. Guiseppi
Cosmic Activation of Ge

- Some uncertainty in the cosmogenic activation rate of some radionuclides in $^{\text{nat}}$Ge and 76Ge
- 68Ge and 60Co are troublesome internal backgrounds

Activation rate measured by placing a working $^{\text{nat}}$Ge detector in a high-intensity neutron beam (LANSCE)

Fluence [$n \text{ cm}^{-2} \text{ pulse}^{-1} \text{ MeV}^{-1}$]

Flux [$n \text{ cm}^{-2} \text{ s}^{-1} \text{ MeV}^{-1}$]

Energy [MeV]

Cosmic Ray Flux:

Cosmic Activation of $^{\text{nat}}\text{Ge}$

- β^+ spectrum constructed by tagging on external back-to-back annihilation γ-rays
Cosmic Activation of 76Ge

Activation rate measured by placing a 76Ge sample in a high-intensity neutron beam (LANSCE)

Cosmic Ray Flux:
Recent R&D

- **Design background simulations**
 - Internal front-ends
 - Internal Cu
 - 40K in plastics
 - New structural components
 - Detector contacts
- **Neutron interaction simulations**
- **Low energy modeling and verification**
- **Detector characterization**
- **Rn deposition on crystal surfaces**
- **Surface alpha background characterization**
- **Spectral shape as a function of source position** *(see arxiv:0902.4370)*

![Graph showing spectral shape as a function of energy](image)
Background modeling
- Simulated major background sources for detector components using MaGe
- Calculated total backgrounds individually for each detector technology under consideration
- Cu purity of ~0.3 Bq/kg is required; sizeable contribution from 208Tl in the cryostat and shield.
- Higher rejection of segmented designs is roughly balanced by extra readout components.
- P-PC appears to achieve the best backgrounds with minimal readout complexity.
First Sub-Module

• 18 natural-Ge Canberra BEGe’s now being delivered
 - $\phi = 70\pm2.5$ mm, $h = 30\pm2.5$ mm
 - 579 g active mass
 - contact $r < 6.5$ mm (5 mm nom.)
 - Front surface metalized for HV
• 4 to 6 crystals per string
• Front-ends mounted next to the crystal
• Closed cold plate and beefier Cu in detector mounts for added strength
Detector Mounts

- Single detector units that attach to form strings
- HV on outer contact
- Mostly electro-formed Cu with minimal amount of plastics
- Front ends integrated into contact pin; encapsulate in electro-formed Cu for α, β shielding
- Currently iterating design and prototyping
Front End Electronics

Pulse Reset

Resistive Feedback

COGENT front ends (U Chicago)

UW “Hybrid” Design

LBNL Design
String Designs
MAJORANA Lab Space

- Design of underground space at Sanford Lab 4850’ level near Davis Cavity
MAJORANA Lab Space

- Design of underground space level near Davis Cavity

4850 Level, June 22, 2009:
T. Denny Sanford, left,
and South Dakota Gov. Mike Rounds.
(Photo by Bill Harlan, SDSTA)
MAJORANA Demonstrator Schedule

- 2009: Create Lab
- 2010: Purchase ^{nat}Ge PPCs
- 2011: Purchase PPCs
- 2012: Assemble 1st cryostat of PPCs
- 2013: Purchase ^{enr}Ge
 - Fabricate ^{enr}Ge dets
 - Assembly of ^{enr}Ge sub-modules
MAJORANA Status

• Support: As a R&D Project by DOE Nuclear Physics & NSF Particle and Nuclear Astrophysics

• Progress towards Demonstrator Module
 - Much design work and prototyping in progress

 - UG clean room laboratory space preparations are proceeding, initial installations in 2009/2010 at Sanford Laboratory (Homestake gold mine, Lead, SD).

 - UG Electroforming facility will be initial focus due to required time to prepare Cu parts of shield.

 - Primary focus on deployment of first demonstrator sub-module cryostat with point-contact detectors.

 - Working with industrial partner to develop Ge refinement process that could be located either near detector fabrication facility or UG.
Majorana & Gerda

Majorana
- Modules of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper and lead
- Initial phase: R&D Demonstrator module - 60kg (30 kg enriched)

Gerda
- Bare ^{enr}Ge in liquid Argon
- Shield: high-purity Argon/H$_2$O
- Phase I: \sim18 kg (HdM/IGEX crystals)
- Phase II: add \sim20kg new detectors
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
Kara Keeter

Duke University, Durham, North Carolina, and TUNL
James Esterline, Mary Kidd, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusey,
Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley
Mark Amman, Marc Bergevin, Yuen-Dat Chan, Mario Cromaz,
Jason Detwiler, Brian Fujikawa, Donna Hurley, Kevin Lesko,
Paul Luke, Alan Poon, Gersende Prior, Craig Tull, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico
Steven Elliott, Victor M. Gehman, Vincente Guiseppe,
Andrew Hime, Kieth Rielage, Larry Rodriguez, Jan Wouters

North Carolina State University, Raleigh, North Carolina and TUNL
Henning Back, Lance Leviner, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Jim Beene, Fred Bertrand, Thomas V. Cianciolo, David Radford, Krzysztof Rykaczewski, Robert Varner, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsuji

Pacific Northwest National Laboratory, Richland, Washington

Queen's University, Kingston, Ontario
Art McDonald

University of Alberta, Edmonton, Alberta
Aksel Hallin

University of Chicago, Chicago, Illinois
Phil Barbeau, Juan Collar, Charles Greenberg, Brian Odom, Nathan Riley

University of North Carolina, Chapel Hill, North Carolina and TUNL
Melissa Boswell, Padraic Finnerty, Reyco Henning, Mark Howe, Michael Akashi-Ronquest, Sean MacMullin, Jacquie Strain, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Richard Creswick, Horatio A. Farach, Todd Hossbach

University of South Dakota, Vermillion, South Dakota
Tina Keller, Dongming Mei, Zhongbao Yin, Chao Zhang

University of Tennessee, Knoxville, Tennessee
William Bugg, Yuri Efremenko

University of Washington, Seattle, Washington
John Amsbaugh, Tom Burritt, Peter J. Doe, Jessica Dunmore, Robert Johnson, Michael Marino, R. G. Hamish Robertson, Alexis Schubert

INFO 09 - Santa Fe

Note: Red text indicates students