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  Review of neutrino oscillations 
  The MINOS experiment and results 

 Muon neutrino disappearance 
 Muon antineutrino disappearance 
 NC event rate 
 Electron neutrino appearance 

  MINOS+ 



Neutrinos Have Mass! 

  νe, νµ, ντ↔ ν1, ν2, ν3 
  Flavor States: creation 

and detection 
  Mass States: propagation  

  A neutrino created as one 
flavor can later be detected as 
another flavor, depending on: 
  distance traveled (L) 
  neutrino energy (E) 

  difference in the squared masses 
(Δm2

ij=m2
i-m2

j)#
  The mixing amplitudes (Uαj) 
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The PMNS Mixing Matrix 

  (12) Sector: Reactor + Solar, L/E~15,000 km/GeV 

  (23) Sector: atmospheric and accelerator, L/E~500 km/GeV 

  (13) Sector mixing not yet observed 

†Δm21
2 = 7.50−0.20

+0.19 ×10−5  eV2 tan2θ12 = 0.452−0.033
+0.035

†† Δm32
2 = 2.32−0.08

+0.12 ×10−3  eV2 *sin2 (2θ23) > 0.96(90% C.L.)
†PRD 83.052002(2011) 
††PRL 106. 181801(2011)   
*SuperK Preliminary, Nu2010 
** Eur.Phys. C27:331-374,2003 
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**sin2 (2θ13) < 0.15 − 0.16
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  Precision measurements provide a 
valuable check that neutrino oscillations 
are the solution to neutrino anomalies  

  PMNS matrix analogous to CKM matrix 
  lepton sector mixing much larger than 

quark sector mixing 
  θ23 maximal, θ12 moderately large, θ13 

small, zero? why? 
  Is there CP violation in the lepton sector?  
  Is it big enough to account for matter vs. 

antimatter asymmetry in the Universe? 
  Small neutrino mass suggests a heavy 

partner (see-saw mechanism)—
Neutrinos provide a window to physics 
at the GUT scale! 



The MINOS Experiment 

P. Vahle, INFO 2011 

6 

  Long-baseline neutrino oscillation 
experiment 

 Neutrinos from NuMI 
beam line 

 L/E ~ 500 km/GeV 
 atmospheric Δm2#

 Two detectors mitigate 
  systematic effects 

 beam flux mis-   
  modeling 
 neutrino interaction  

 uncertainties 

Far Detector 
735 km from Source 

Near Detector 
1 km from Source 



MINOS Physics Goals 
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  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) #
  test oscillations vs. decay/

decoherence 
  look for differences between 

neutrino and anti-neutrinos 

Δm2
32 

Δm2
21 

νµ →νX
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Δm2
32 

Δm2
21 

νµ →νS

Δm2
14 

  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) #
  test oscillations vs. decay/

decoherence 
  look for differences between 

neutrino and anti-neutrinos 

  Mixing to sterile neutrinos? 



MINOS Physics Goals 
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Δm2
32 

Δm2
21 

νµ →νe

  Measure νμ  disappearance 
as a function of energy 
   Δm2

32 and sin2(2θ23) #
  test oscillations vs. decay/

decoherence 
  look for differences between 

neutrino and anti-neutrinos 

  Mixing to sterile neutrinos? 
  Study νμ→νe mixing 

 measure θ13#



The Detectors 
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1 kt Near Detector— 
measure beam 
before  
oscillations 

5.4 kt Far Detector— 
look for changes in the beam 
relative to the Near Detector 

Magnetized, tracking calorimeters 

735 km from source 

1 km from source 



Soudan Fire 
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 March 17, smoke detected in FD 
hall due to a fire in the shaft 

 Power to the lab shut off 
automatically 

 Foam pumped in to extinguish 
the fire 

 No damage to the MINOS 
detector 

 Detector returned to full 
operations May 19 

Fire Retardant Foam  
Fills the Hall 

After Cleanup 



Detector Technology 
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Multi-anode PMT 

Extruded 
PS scint. 
4.1 x 1 cm2 

WLS fiber 

Clear 
Fiber cables 

2.54 cm Fe 

U V planes 
+/- 450 

  Tracking sampling calorimeters 
  steel absorber 2.54 cm thick (1.4 X0) 
  scintillator strips 4.1 cm wide  
   (1.1 Moliere radii) 
  1 GeV muons penetrate 28 layers 

  Magnetized 
 muon energy from range/curvature 
 distinguish μ+ from μ-#

  Functionally equivalent 
  same segmentation  
  same materials 
  same mean B field (1.3 T) 



e-#

CC νe  Event #

Events in MINOS 

NC Event #
ν #
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  νμ Charged Current events: 
  long μ track, with hadronic activity at vertex 
  neutrino energy from sum of muon energy (range or 

curvature) and shower energy 

CC νμ  Event #

μ-#

Depth (m) 

Tr
an

sv
er

se
 p

os
iti

on
 (

m
) 

νµ + N → µ + X

Simulated Events 



e-#

CC νe  Event #

Events in MINOS 

NC Event #
ν #
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  Neutral Current events: 
  short, diffuse shower event 
  shower energy from calorimetric response 

Simulated Events 



e-#

CC νe  Event #

Events in MINOS 

NC Event #
ν #
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CC νμ  Event #

μ-#

Depth (m) 

νe + N → e− + XTr
an
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  νe Charged Current events: 
  compact shower event with an EM core 
  neutrino energy from calorimetric response 

Simulated Events 



Making a Neutrino Beam 
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  Production 
  bombard graphite target with 120 GeV p+ from Main Injector 

  2 interaction lengths 
  310 kW typical power 

  produce hadrons, mostly π and K 



Making a Neutrino Beam 
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  Focusing 
  hadrons focused by 2 magnetic focusing horns 
  energy of focused particles depends on separation between 

target and horns 
  sign selected hadrons 

  forward current, (+) for standard neutrino beam runs 
  reverse current, (–) for anti-neutrino beam 



Making a Neutrino Beam 
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  Decay 
 2 m diameter decay pipe 
  result: wide band neutrino beam 
  secondary beam monitored 



Making a Neutrino Beam 
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π- 

π+ 

Target Focusing Horns

2 m 

675 m

νµ 

νµ 

15 m 30 m

120 GeV 
p’s from MI

Neutrino mode 
Horns focus π+, K+ 

νμ:  91.7%  
νμ:  7.0% 
νe+νe :  1.3% 

Ev
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Making an Anti-neutrino Beam 
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π- 

π+ 

Target Focusing Horns

2 m 

675 m

νµ 

νµ 

15 m 30 m

120 GeV 
p’s from MI

Anti-neutrino Mode 
Horns focus π-, K- 
enhancing the νμ flux 

Neutrino mode 
Horns focus π+, K+ 

νμ:  39.9%  
νμ:  58.1% 
νe+νe :  2.0% 

Ev
en

ts
 

Ev
en

ts
 

νμ:  91.7%  
νμ:  7.0% 
νe+νe :  1.3% 



Near to Far 
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  Neutrino energy depends on angle wrt original pion 
direction and parent energy 
 higher energy pions decay further along decay pipe 
 angular distributions different between Near and Far  

FD#
Decay Pipe#

π+#
Target#

ND#

p#

Far spectrum without oscillations is similar, but not identical to 
the Near spectrum! 

Eν ≈ 0.43
Eπ

1+ γ 2θν
2



Extrapolation 
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  Muon-neutrino and anti-neutrino analyses: beam matrix for 
FD prediction of track events 

  NC and electron-neutrino analyses: Far to Near spectrum 
ratio for FD prediction of shower events 
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Unoscillated 

Oscillated 

  νμ spectrum#

νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio#

Monte Carlo#
(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )#

Characteristic 
Shape 

Monte Carlo#



Unoscillated 

Oscillated 

  νμ spectrum#

νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio#

Monte Carlo#
(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )#

Monte Carlo#

sin2(2θ)#



Unoscillated 

Oscillated 

  νμ spectrum#

νμ Disappearance 
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P(νµ →νµ ) = 1− sin
2 2θ( )sin2 (1.27Δm2L / E)

spectrum ratio#

Monte Carlo#
(Input parameters:  sin22θ = 1.0,  Δm2 = 3.35x10-3 eV2 )#

Monte Carlo#

Δm2#



CC events in the Near Detector 
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  Show ND energy spectrum 
  Majority of data from 

low energy beam 
  High energy beam 

improves statistics in 
energy range above 
oscillation dip 

  Additional exposure in 
other configurations for 
commissioning and 
systematics studies 



Far Detector CC Events 
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Predicted 
(no osc.) 

Observed 

Contained 2451 1986 

Non-
contained 

2206 2017 

 Oscillations fit the data well, 66% 
of experiments have worse χ2 

Contained Vertex Events Non-contained Vertex Events 

P. Adamson et al., Phys.Rev.Lett. 106 181801 (2011) 



Contours 
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  Pure decoherence† 
disfavored at 9σ#

  Pure decay‡ 
disfavored at 7σ#

Δm2 = 2.32−0.08
+0.12 ×10−3eV2

sin2 (2θ) > 0.90 (90%C.L.)

†G.L. Fogli et al., PRD 67:093006 (2003)  
‡V. Barger et al., PRL 82:2640 (1999) 
*J. Hosaka et al., Phys. Rev. D 74, 032002 (2006) 

* 



Anti-neutrino Disappearance 
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  Measure oscillations using 7% anti-neutrino 
component of the neutrino beam 

  Peaked at higher energies 

  Selection efficiency 90%, purity 95%#



Anti-neutrino Disappearance 
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No Oscillations: 150.3−18.2
+16.3

With Oscillations: 136.4−14.9
+15.2

Observed: 130

at sin2 (2θ 23) = 1

Δm2 <  3.37 ×  10−3  eV2  (90% C.L.)



ND Anti-neutrino Data 
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 Focus and select positive 
muons 
 purity 94.3% after charge 

sign cut 
 purity 98% < 6GeV 

 Analysis proceeds as (2008) 
neutrino analysis 

 Data/MC agreement 
comparable to neutrino 
running 
 different average kinematic 

distributions 
 more forward muons 



FD Data 
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Δm2 = 3.36−0.40
+0.46 ×10−3eV2

sin2 (2θ) = 0.86−0.12
+0.11

  No oscillation 
Prediction: 156 

  Observe:  97 
  No oscillations  

disfavored at 6.3σ#



Comparisons to Neutrinos 
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All Contours Together 
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Anti-neutrino Disappearance Outlook 
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  Updated anti-neutrino disappearance analysis with 
3x1020 POT exposure expected this summer 



Neutral Current Near Event Rates 
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  Neutral Current event rate 
should not change in 
standard 3 flavor oscillations 

  A deficit in the Far event rate 
could indicate mixing to 
sterile neutrinos 

  νe CC events would be 
included in NC sample, 
results depend on the 
possibility of νe appearance 



Neutral Currents in the Far Detector 
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  Expect:  757 events 

 Observe:  802 events 

 No deficit of NC events 

fs ≡
Pνµ →νs

1− Pνµ →νµ

< 0.22 (0.40) at 90% C.L.
no (with) νe appearance  

R= Ndata − BG
SNC

1.09 ± 0.06 (stat.) ± 0.05 (syst.)
(no νe appearance)

1.01 ± 0.06 (stat.) ± 0.05 (syst.) 
(with νe  appearance)
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 At L/E~500 km/GeV, dominant oscillation mode is νµ→ντ #
 A few percent of the missing νµ could change into νe 

P νµ →νe( ) = Patm e
− i(

Δm32
2 L
4E

+δcp ) + Psol

2

Patm = sin2θ23 sin
2 2θ13 sin

2 Δm31
2 L
4E

⎛
⎝⎜

⎞
⎠⎟
Psol ≈ cos

2θ23 sin
2 2θ12 sin

2 Δm21
2 L

4E
⎛
⎝⎜

⎞
⎠⎟

“Atmospheric” Term 
Depends on Δm2#

and unknown θ13#

“Solar” Term 
<1% for current 

accelerator experiments#

νe Appearance 



νe Appearance 
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Interference Term 
- for neutrinos 

+ for antineutrinos 

 
2 Patm Psol cos

Δm32
2 L
4E

⎛
⎝⎜

⎞
⎠⎟
cosδCP  2 Patm Psol sin

Δm21
2 L

4E
⎛
⎝⎜

⎞
⎠⎟
sinδCP

if δCP ≠ 0,

P νµ →νe( ) ≠ P ν µ →ν e( )

 At L/E~500 km/GeV, dominant oscillation mode is νµ→ντ #
 A few percent of the missing νµ could change into νe 

P νµ →νe( ) = Patm e
− i(

Δm32
2 L
4E

+δcp ) + Psol

2



νe Appearance 
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Patm = sin2θ23 sin
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2

In matter, additional term in 
Hamiltonian from νe + e CC 
scattering modifies oscillation 
probability, ~30% effect in 
MINOS 

a = ±
GFNe

2
≈ (4000 km)−1

 At L/E~500 km/GeV, dominant oscillation mode is νµ→ντ #
 A few percent of the missing νµ could change into νe 

P νµ →νe( ) = Patm e
− i(

Δm32
2 L
4E

+δcp ) + Psol

2

Δm32
2

Δm21
2

Normal Hierarchy Δm32
2

Δm21
2

Inverted Hierarchy 

? 
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The Updated Analysis 
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  Look for an excess of νe in the FD 
compared to prediction from ND 
measurement 
  select events with a νe topology 
  apply selection to ND, determine 

fraction of each background type 
  extrapolate each background type 

separately 
  fit FD data to extract oscillation 

parameters 
  Updated analysis: 

  new event selection 
  new fitting technique in the FD 
  more data 



Looking for Electron-neutrinos 
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  New electron neutrino selection technique 

  Compare candidate events to a library of 
simulated signal and background events 

  Comparison made on a strip by strip basis 
  Discriminating variables formed using 

information from 50 best matches 

Input (data or MC) 
Compare to MC Library 

L = ln P(nA
i ;λ)P(nB

i ;λ)dλ
0

∞

∫
⎛

⎝⎜
⎞

⎠⎟i=1

Nstrips

∑
ΔL = −(Llib − Lself )

Library Event #1 

Library Event #3 

Library Event #2 

. . . 
Library Event #k 

Library Event #30M 

. . . 

Good Match 

Bad Match 

Compute 
variables 
using 
information 
from best N 
matches  



Discriminating Variables 
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  Three discriminating variables combined in neural net  

  Achieve ~40% signal efficiency, ~98% BG rejection 



Near Detector Data 
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  ND data sample 
comprised of NC, 
νμ CC, beam νe CC 
interactions. 

  Each propagates 
to the FD in a 
different manner 

  Must determine 
relative 
composition of ND 
spectrum 



Measuring the Background 
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 Use ND data in different configurations to extract relative 
components of background 

 Selected event spectrum has different relative components of 
each background type 



Decomposition 
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(59%) 
(29%) 
(12%) 



νe Appearance Results 
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  In signal enhanced region, based on ND data, expect: 
49.5±7.0(stat.)±2.8(syst.) 



νe Appearance Results 
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  In signal enhanced region, based on ND data, expect: 
49.5±7.0(stat.)±2.8(syst.) 

  Observe:  62 events in the FD#



Fitting to Oscillations 
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  Oscillation parameters 
extracted from a full 3 
flavor fit to energy 
spectrum in 3 bins of PID 



Fitting to Oscillations 
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  Best fit: sin2(2θ13)=0.040 
(normal hierarchy, δCP=0, sin2(2θ23)=1)#



FD Data 
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  Energy spectrum for signal enhanced region 



νe Appearance Results 
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for δCP = 0, sin2 2θ23( ) = 1,

Δm32
2 = 2.32 ×10−3 eV2

sin2 (2θ13) = 0.04 (0.08) at best fit
sin2 (2θ13) < 0.12 (0.19) at 90% C.L.
sin2 (2θ13) = 0 excluded at 89%
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  We have more data on 
tape and will continue 
to run until next winter 

Comparing to T2K 



MINOS+ 
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  In the NOvA era, the MINOS detectors will be 
exposed to a high intensity beam peaked at 7 GeV 

  Above the oscillation sweet spot, but in a region that 
currently suffers from poor statistics  



MINOS+ 
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  Continue to contribute to oscillation parameter 
measurements, but with different systematics 



Non Standard Interactions in MINOS+ 

  High energy behavior 
can constrain models, 
for example NSI 
 NSI has a measurable 

effect in neutrinos as 
well as antineutrinos 

 Comparison of low 
energy to high energy 
behavior could 
disentangle this 
without anti-nu running 

J. Kopp, P.A.N. Machado and S.Parke, 
Phys.Rev.D82:113002 (2010). 
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  With 7x1020 POT of neutrino 
beam, MINOS finds 
  muon-neutrinos disappear 

  NC event rate is not diminished 

  Updated electron-neutrino 
appearance results: 

  With 1.71x1020 POT of anti-
neutrino beam 

Δm2 = 2.32−0.08
+0.12 ×10−3eV2,

sin2 (2θ) > 0.90 (90%C.L.)

fs < 0.22(0.40) at 90% C.L.

sin2 (2θ13) < 0.12 (0.19) at 90% C.L.
sin2 (2θ13) = 0 excluded at 89%

Δm2 = 3.36−0.40
+0.46 ×10−3eV2,

sin2 (2θ) = 0.86−0.12
+0.11

MINOS+ is on the horizon! 



Backup Slides 
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  Started data taking 2005 
  1x1021 POT milestone achieved Summer 2010 

Green-LE neutrino running 
Orange-LE antineutrino running 
Red-Special runs, alternate target positions 
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Beam Performance 
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Anti- 
neutrino 
running 

Summer 2010 MINOS Results 

  7x1020 POT low energy neutrino mode 
  1.71x1020 POT antineutrino mode 



LE 10# ME# HE#

Neutrino Spectrum 
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  Use flexibility of beam line to constrain hadron 
production, reduce uncertainties due to neutrino flux 



Far/Near differences 

P. Vahle, INFO 2011 

62 

 νμ CC events oscillate away 
 Event topology 

 Light level differences (differences in fiber lengths) 

 Multiplexing in Far (8 fibers per PMT pixel) 

 Single ended readout in Near 

 PMTs (M64 in Near Detector, M16 in Far): 
 Different gains/front end electronics 

 Different crosstalk patterns 

 Neutrino intensity 

 Relative energy calibration/energy resolution 

Account for these lower order effects using detailed detector simulation 



Analysis Improvements 
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  Since PRL 101:131802, 2008 
  Additional data 

  3.4x1020 → 7.2x1020 POT 

  Analysis improvements 
  updated reconstruction and 

simulation 
  new selection with increased 

efficiency 
  no charge sign cut 
  improved shower energy 

resolution 
  separate fits in bins of energy 

resolution 
  smaller systematic 

uncertainties 



New Muon-neutrino CC Selection 
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Shower Energy Resolution 
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Energy Resolution Binning 
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CC Systematic Uncertainties 
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  Dominant systematic 
uncertainties: 
  hadronic energy 
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  track energy calibration 
 NC background 
  relative Near to Far 

normalization 



Resolution Binning 
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  Contour includes effects 
of dominant systematic 
uncertainties 
  normalization 
 NC background 
  shower energy 
  track energy 



Contours by Run Period 
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Fits to NC   
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  Fit CC/NC spectra 
simultaneously with 
a 4th (sterile) 
neutrino 

  2 choices for 4th 
mass eigenvalue 
 m4>>m3 
 m4=m1 





Electron-neutrino Systematics 
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  Systematics evaluated 
using modified MC 

  Effect of systematics on 
each bin added in 
quadrature 

  Systematics in each bin 
included in fit as nuisance 
parameters 



Electron-neutrino prediction in FD 
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  Total BG:      49 
 NC:     34 
 Muon-neutrino CC:   7 
 beam electron-neutrinos:  6 
  tau-neutrino CC:   2 

  Signal at CHOOZ limit:   30 



Electron-neutrino F/N ratios 
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Checking Signal Efficiency 
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  Test beam 
measurements 
demonstrate 
electrons are well 
simulated 



Checking Signal Efficiency 
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  Check electron neutrino selection efficiency by 
removing muons, add a simulated electron 



Muon Removed Sample 
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FD Electron-neutrinos Vertices 
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Electron-neutrino Event Rate 
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Feldman-Cousins Effect 
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Cross Check Fits 
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  OFFICIAL FIT     0.040  0.115  

  LEM energy shape fit < 5 GeV  0.021  0.089 
  ANN energy shape fit    0.046  0.135 
  ANN energy shape fit < 5 GeV  0.045  0.136 
  2010-style analysis (ANN rate-only)  0.041  0.130 
  LEM rate-only     0.064  0.147 
  LEM shape fit     0.046  0.121 
  Official fit excluding new data  0.057  0.144



electron anti-neutrino appearance 
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Combined fits 
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Combined Fits 
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Anti-neutrino Disappearance 
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No Oscillations: 150.3−18.2
+16.3

With Oscillations: 136.4−14.9
+15.2

Observed: 130

at sin2 (2θ 23) = 1

Δm2 <  3.37 ×  10−3  eV2  (90% C.L.)



Anti-neutrino Disappearance 
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  Hadron production and cross sections conspire to 
change the shape and normalization of energy 
spectrum 

~3x fewer antineutrinos for the same exposure 

Making an antineutrino beam 



Anti-neutrino Selection 
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ND Data 
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  Data/MC agreement 
comparable to 
neutrino running 



FD Data 
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Anti-neutrino Systematics 
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FD Anti-neutrino Data 
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  Vertices uniformly distributed 
  Track ends clustered around coil hole 



Atmospheric Neutrinos 
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Rν /ν
data / Rν /ν

MC = 1.04−0.10
+0.11 ± 0.10

Δm2 − Δm2 = 0.4−1.2
+2.5 ×10−3eV2



MINOS+ 
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  Sterile neutrino reach 
  Use CC disappearance 

(brown) 
  NC rate (purple) 



Extra Dimensions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Neutrino Energy (GeV)
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1.0

P(
ν µ   

  ν
µ)

Standard (Normal)
Standard (Inverted)
R = 5x10-7m (Normal)
R = 5x10-7m (Inverted)

MINOS, L = 735 km (without matter effect)

sin22θ13=0.07sin22θ23=1 Δm2
atm=2.49x10-3eV2

Δm2
sol=7.56x10-5eV2sin2θ12=0.319

m0 = 0

δ = 0

Assumes heavy RH 
(sterile) neutrino + 
extra dimensions! 

P.A.N.Machado, H.Nunokawa,R.Zukanovich 
Funchal, hep-ph/1101.003v1 



Tau Neutrinos 

#  There are 80 tau events/ 1000 
NC 
#  With some work it might be 
possible to see a signal but its hard! 
#  OPERA have 1 tau event so far… 



Seasonal Muon Variation 
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Near to Far 
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Far spectrum without oscillations is similar, but not identical to 
the Near spectrum! 

Eν ≈ 0.43
Eπ

1+ γ 2θν
2


