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OUTLINE 

�� Dark matter in the MSSM. 

�� Gauge-mediated SUSY breaking creates stable Q-balls and 
baryons in the same process (Affleck-Dine).  

�� Existing limits on Q-ball dark matter. 

�� New astrophysical limits on Q-balls from neutron star 
lifetimes.   

�� New experimental probe of Q-balls from the neutrinos 
produced in terrestrial passage:  

�� Non-trivial zenith angle dependence.  

�� Small annual modulation of flux.    
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�� Many new fields in the MSSM.  The general assumption is 
that the LSP is the dark matter (neutralino or gravitino).  

�� However, one might wonder whether or not some stable 
configuration exists of some of the non-LSP fields that 
could act as dark matter. 

�� Q-balls are just such an example.     
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�� The MSSM has many flat directions. Many carry nonzero 
U(1)B-L. 

�� These fields are generally displaced from their minima 

during inflation: 

Baryogenesis through a coherent scalar field. 
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�� The MSSM has many flat directions. Many carry nonzero 
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�� The MSSM has many flat directions. Many carry nonzero 
U(1)B-L. 

�� These fields are generally displaced from their minima 

during inflation: 

�� A-terms generically break the U(1)B-L symmetry of the flat 
direction: 

�� Phase mismatch between A-terms violates CP.   

Baryogenesis through a coherent scalar field. 
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��At the            epoch, 
in the radial direction   
rolls to the origin.  

��At this epoch, the A-
terms give a kick to    
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Kusenko & Shaposhnikov 
(1997), Enqvist & 
McDonald (1998) 
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AD field 

Baryons 
Baryonic Q-balls 

Dark Matter 

stableLSP 

Unstable

Fragmentation of the AD condensate produces Q-balls 

Observable 
GWs 
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Kusenko & 
Mazumdar (2008) 



�� Suppose we have a scalar field theory, with some 
field that has a globally conserved charge associated 
with a U(1) symmetry:                 .   

Constructing Q-ball solutions 
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�� Suppose we have a scalar field theory, with some 
field that has a globally conserved charge associated 
with a U(1) symmetry:                 .   

�� Then the Q-ball solution is the field configuration 
which minimizes the energy E 

for a given, constant amount of charge Q. 

Solved first by Sidney Coleman (1985). 
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�� Suppose we have a scalar field theory, with some 
field that has a globally conserved charge associated 
with a U(1) symmetry:                 .   

�� Then the Q-ball solution is the field configuration 
which minimizes the energy E 

for a given, constant amount of charge Q. 

Solved first by Sidney Coleman (1985). 

A Q-ball is an example of a non-topological soliton.  
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Minimize the energy,                                                       , subject to                 . 

A useful technique is offered by the method of Lagrange multipliers :     

                           .  

E = d3x
1

2
˙ � 

2
+

1

2
��

2
+ U(�)

� 

� � 
� 

	 
 
� Q = const

= E +� Q�
1

2i
d3x 	 *�0	 �	�0	 *( )�

� 

	 � 

 


 
 

Ian Shoemaker INFO 2009 



Constructing the Q-ball solution 

22 
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Minimize the energy,                                                       , subject to                 . 

A useful technique is offered by the method of Lagrange multipliers :     

                           .  

The first term is minimized by:                             .  

The second term is minimized with respect to field configurations by choosing the 
bounce solution for tunneling in                                 . 
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Just a crazy theoretical curiosity?  

Q-balls have been observed in condensed matter 
systems. Might they be present elsewhere in 

nature?  
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Gauge Mediated Models 

SUSY 
breaking 
sector 

Messenger 
sector 

MSSM 

Gauge  
   int.  

Gauge  
   int.  

•� In gauge mediated models the two-loop effective 
potential is logarithmic above the messenger scale � 
Flat direction. 

•� In these models the SUSY breaking scale is 
much smaller because of loop factors: 

msoft ~
g2

16� 2 Mmess ~ 102�3GeV

� ~ msoft

Dine et al., 1997 
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Q-balls in Gauge-mediated models 
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�� The potential for a flat direction in these models gives Q-
balls a mass:                          . M(QB ) ~ msoftQB

3 / 4
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�� The potential for a flat direction in these models gives Q-
balls a mass:                          . 

�� Very large Q-balls are stable with respect to fermionic 
decay modes: 
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�� The potential for a flat direction in these models gives Q-
balls a mass:                          . 
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�� The potential for a flat direction in these models gives Q-
balls a mass:                          . 

�� Very large Q-balls are stable with respect to fermionic 
decay modes: 

�� Such Q-balls can be stable and exist as a (baryonic) dark 

matter today.  

M(QB ) ~ msoftQB
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Are such large Q-balls fine-tuned?  

�� Extremely large Q-balls are likely in the AD mechanism.  

�� The wavelength of the best-amplified mode can be as large as 
the horizon size.  

�� Q-balls are created just after the AD field starts its rotation: 

    . 

      

H�1 ~ ��1 ~ �0 / Ms
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�� Extremely large Q-balls are likely in the AD mechanism.  

�� The wavelength of the best-amplified mode can be as large as 
the horizon size.  

�� Q-balls are created just after the AD field starts its rotation: 

    . 

   Thus:    

Numerically Kasuya and Kawasaki (2001) have found 
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“Old” limits on Q-balls 
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q

q 

How to detect a Q-ball 

�� The non-standard vacuum inside a Q-ball gives a large 
Majorana mass for the gluino. 

�� This in turn gives quarks a large Majorana mass, allowing 
Q-balls to convert baryons to anti-baryons:   

Q � ball
n + Q(B) = n + Q(B + 2)

Kusenko, Loveridge, 
Shaposhnikov (2005) 
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Super-K Limits 

Experimental limit for neutral 
FD Q-balls:  Q >1022
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Arafune et al. (2008) 



New limits on Q-balls: neutrinos and 

neutron stars 
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Do Q-balls accumulate in 

dense astrophysical 

objects?  
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Do Q-balls accumulate in dense 

astrophysical objects?  

�� Far too heavy to stop inside the Sun or the Earth: 
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Do Q-balls accumulate in dense 
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Neutron Star Limits 

�� Neutron stars are so dense that a collision with a Q-ball 
is sure to result in capture.  

�� The time for a neutron star to capture a Q-ball is roughly:  

�� All sufficiently light Q-balls are captured inside Neutron 
stars:  

� cap ~
1

4�RNS
2FDM

Q <1043 Ms

TeV

� 

� 
� 

� 

� 
� 

4 / 3
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Radiative corrections to the flat direction 

potential  

�� Although any given FD has no classical potential, quantum 
corrections lift this degeneracy: 
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Radiative corrections to the flat direction 

potential  

�� Although any given FD has no classical potential, quantum 
corrections lift this degeneracy: 

�� When the first term dominates:                                . 

�� Gauge-type Q-ball dark matter: Kusenko, Shaposhnikov 
(1997).  

Mgauge (QB ) ~ MSQ
3 / 4
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Q-split 

�� The effects of gravity-mediation alter the mass-charge relation: 

I.S.   arXiv:0907.0269 

Mgravity (QB ) ~ m3 / 2QBMgauge (QB ) ~ MSQ
3 / 4 �
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Q-split 

�� The effects of gravity-mediation alter the mass-charge relation: 

�� Although a gravity-type Q-ball can be stable with respect to 
fermionic decay, it is not stable with respect to solitonic decay.  
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Q-split 

�� The effects of gravity-mediation alter the mass-charge relation: 

�� Although a gravity-type Q-ball can be stable with respect to 
fermionic decay, it is not stable with respect to solitonic decay.  

�� Once a Q-ball reaches a certain critical charge                         
it fragments into two equally-sized daughter Q-balls.   

Qsp ~ Ms
m3 / 2
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Q-split 

�� The effects of gravity-mediation alter the mass-charge relation: 
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First Q-split occurs 
after about 1 year 
inside a neutron 
star.  



Astrophage of Neutron Stars via Q-splitting 

�� Q-splitting leads to the exponential growth of Q-balls inside a 
neutron star: 

�� Typical neutron stars have about                , which is 
consumed by Q-balls in a very short time: 

�� Thus all Q-balls which would be captured by neutron stars are 
phenomenologically excluded.   
��    

NQ (t) �Qsp 2t / tsp

QNS ~ 1057

t* <109 keV

m3 / 2
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New astrophysical limits on Q-balls 
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I.S.   arXiv:0907.0269 
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Phenomenological 
constraints imply: 

Which naturally 
avoids overclosure.   

New astrophysical limits on Q-balls 
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U(1)B violation can hide the Q-split 

�� Kusenko, Loveridge, Shaposhnikov (2005) used the higher 
dimensional operators: 

�� To show that a particular flat direction with         has a 
maximum Q-ball size due to U(1) violation: 

�� Thus FDs for which             , evade the neutron star 
limits.    
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How to constrain Q-balls with  Qcr < Qsp
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Neutrino signal from terrestrial passage of 

Q-balls 

Q � ball

�

� �
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Neutrinos from Q-balls passing through the 

Earth 

�� Q-balls convert nucelons into anti-nucleons with high 
probability. Subsequent annihilations lead to flux of 
neutrinos:  

q

q 

Q � ball

nn �
N�

3
� +
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+ � 0( )

� ±
� μ±

+ � μ (� μ )

μ±
� e±

+ � e (� e )
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Neutrino flux 
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This is right around the 
same energies and 
total flux as the 
atmospheric neutrino 
flux, and may be 
detectable.  .  .



Zenith Angle Dependence 

�� The isotropy of the Q-ball flux on the Earth implies a 
zenith angle dependence determined by the Earth 
geometry: 

 where                                               , and       and      
are the mantle and core densities respectively.         
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Zenith Angle dependence 
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Q-ball induced neutrino spectrum 

�� The neutrino spectrum can be found from the 
experimentally known pion spectrum from at rest  
annhiilations 

�� And normalizing to the overall flux found earlier:  
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Neutrino Spectrum 
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Spectrum of Q-ball produced neutrinos 

�� Important note: this spectrum ignores possibly important 
matter effects.  

�� Pion and muon interactions in matter may cause their 

decay at rest, induces a monochromatic line in the 
neutrino spectrum.  

�� If confirmed, this will aid in the prospects for detection.  
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Conclusions 

�� We have presented stringent new limits on Q-balls for 
which               . Qcr > Qsp
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�� We have presented stringent new limits on Q-balls for 
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�� For such Q-balls not to destroy neutron stars, we need                   
which can be discovered at the LHC, and which naturally avoids 
gravitino overclosure.  

Qcr > Qsp

m3 / 2 < keV
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but their transitory passage through the Earth may 
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Conclusions 

�� We have presented stringent new limits on Q-balls for 
which               . 

�� For such Q-balls not to destroy neutron stars, we need                   
which can be discovered at the LHC, and which naturally avoids 
gravitino overclosure.  

�� Q-balls in the opposite limit are much less constrained, 

but their transitory passage through the Earth may 
produce a detectable level of neutrinos. 

�� Such a signal has a peculiar zenith angle dependence and a small 
annual modulation.    

Qcr > Qsp

m3 / 2 < keV
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