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OUTLINE

Dark matter in the MSSM.

Gauge-mediated SUSY breaking creates stable Q-balls and
baryons in the same process (Affleck-Dine).

Existing limits on Q-ball dark matter.

New astrophysical limits on Q-balls from neutron star
lifetimes.

New experimental probe of Q-balls from the neutrinos
produced in terrestrial passage:

Non-trivial zenith angle dependence.
Small annual modulation of flux.
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Supersymmetry

Standard particles SUSY parucles

» Many new fields in the MSSM. The general assumption is
that the LSP is the dark matter (neutralino or gravitino).
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» Many new fields in the MSSM. The general assumption is
that the LSP is the dark matter (neutralino or gravitino).

» However, one might wonder whether or not some stable
configuration exists of some of the non-LSP fields that
could act as dark matter.
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Supersymmetry

Standard particles SUSY particles
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» Many new fields in the MSSM. The general assumption is
that the LSP is the dark matter (neutralino or gravitino).

» However, one might wonder whether or not some stable
configuration exists of some of the non-LSP fields that
could act as dark matter.

» Q-balls are just such an example.
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. . [Affleck, Dine (1995)]
Affleck-Dine Mechanism  [Dine Randall, Thomas (1995)]

Baryogenesis through a coherent scalar field.
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. . [Affleck, Dine (1995)]
Affleck-Dine Mechanism  [Dine Randall, Thomas (1995)]

Baryogenesis through a coherent scalar field.

» The MSSM has many flat directions. Many carry nonzero
U(Ds.1.
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. . [Affleck, Dine (1995)]
Affleck-Dine Mechanism  [Dine Randall, Thomas (1995)]

Baryogenesis through a coherent scalar field.

» The MSSM has many flat directions. Many carry nonzero
U(Ds.1.

» These fields are generally displaced from their minima
during inflation:

- | » ) E 1/n+1
Vg)=-H'lgl + -l = W‘M(M)
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. . [Affleck, Dine (1995)]
Affleck-Dine Mechanism  [Dine Randall, Thomas (1995)]

Baryogenesis through a coherent scalar field.

» The MSSM has many flat directions. Many carry nonzero
U(Ds.1.
» These fields are generally displaced from their minima

during inflation:

- | » ) E 1/n+1
Vg)=-H'lgl + -l = W‘M(M)

» A-terms generically break the U(1);, symmetry of the flat

direction: aH + Am, )
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. . [Affleck, Dine (1995)]
Affleck-Dine Mechanism  [Dine Randall, Thomas (1995)]

Baryogenesis through a coherent scalar field.

» The MSSM has many flat directions. Many carry nonzero
U(Ds.1.

» These fields are generally displaced from their minima
during inflation:

22 1 2n+4 _ EWH
V() ==H'lg| +— 5|9 E» \%\—M( M)

» A-terms generically break the U(1);, symmetry of the flat

direction: aH + Am, )
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» Phase mismatch between A-terms violates CP
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At the H~m,, epoch, At this epoch, the A-

in the radial direction ¢ terms give a kick to ¢

rolls to the origin. in the angular
direction.
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At the H~m,, epoch, At this epoch, the A-

in the radial direction ¢ terms give a kick to ¢
rolls to the origin. in the angular
direction.
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Fragmentation of the AD condensate produces Q-balls

AD field

/'

Baryons
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Fragmentation of the AD condensate produces Q-balls

Kusenko & Shaposhnikov
(1997), Enqvist &
McDonald (1998) AD field

Baryons
Baryonic Q-balls
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Fragmentation of the AD condensate produces Q-balls

Kusenko & Shaposhnikov
(1997), Enqvist &
McDonald (1998)

AD field

n v

Dark Matter
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Fragmentation of the AD condensate produces Q-balls

Kusenko &
Mazumdar (2008)

Observable

AD field

v

Dark Matter
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Constructing Q-ball solutions

= Suppose we have a scalar field theory, with some
field that has a globally conserved charge associated
with a U(l) symmetry: ¢ — e .

17
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Constructing Q-ball solutions

= Suppose we have a scalar field theory, with some
field that has a globally conserved charge associated
with a U(l) symmetry: ¢ — e .

" Then the Q-ball solution is the field configuration
which minimizes the energy E

1,.p 1
E=| d3x[5 @ + E\Vw\z +U (QO)]

¢(r) for a given, constant amount of charge Q.
Thin-wall Q-ball profile

- 0= 2% [ &x(¢" a0 - ping’)

Solved first by Sidney Coleman (1985).
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Constructing Q-ball solutions

= Suppose we have a scalar field theory, with some
field that has a globally conserved charge associated
with a U(l) symmetry: ¢ — e .

" Then the Q-ball solution is the field configuration
which minimizes the energy E

1,.p 1
E=| d3x[5 @ + E\Vw\z +U (QO)]

¢(r) for a given, constant amount of charge Q.
Thin-wall Q-ball profile

; 0= 2% [ &x(¢"dp - 939"

Solved first by Sidney Coleman (1985).

A Q-ball is an example of a non-topological soliton.

19

7/9/09 lan Shoemaker INFO 2009



Constructing the Q-ball solution

I. 1
Minimize the energy, £ = fd3xl§‘(p‘2 + E‘pr‘z + U((P)] , subject to Q = const .
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Constructing the Q-ball solution

I,.o 1 2
Minimize the energy, £ = fd3xlg‘¢‘ + E‘V(P‘ + U((P)] , subject to Q = const .
A useful technique is offered by the method of Lagrange multipliers :

|
E,=E+w Q—z—ifd3x(fp*ao¢—€0aofp*)].
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Constructing the Q-ball solution

l,. 1
Minimize the energy, £ = fd3XI5\(p\2 + E‘pr‘z + U((P)] , subject to Q = const .

A useful technique is offered by the method of Lagrange multipliers :

e )
E, =E+a)lQ—2—ifd x(g* dye (po"o(p*)].

- d33i %\aosv - iw€0|’2 + [ d3XE Vol +0, (90)] + 00
\ I
I |

The first term is minimized by: @(x,t) = e “@(x) .

The second term is minimized with respect to field configurations by choosing the
bounce solution for tunneling in 7 (¢) = U(p) - —w’p>
v 2
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Constructing the Q-ball solution

l,. 1
Minimize the energy, £ = fd3XI5\(p\2 + E‘pr‘z + U((P)] , subject to Q = const .

A useful technique is offered by the method of Lagrange multipliers :

e )
E, =E+a)lQ—2—ifd x(g* dye (po"o(p*)].

- d33i %\aosv - iw€0|’2 + [ d3XE Vol +0, (90)] + 00
\ I
I |

The first term is minimized by: @(x,t) = e “@(x) .

The second term is minimized with respect to field configurations by choosing the
bounce solution for tunneling in 7 (¢) = U(p) - —w’p>
v 2

The final step is to minimize gw with respect to .
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Just a crazy theoretical curiosity?
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Just a crazy theoretical curiosity?

seek endi
PRL 98, 265302 (2007) FHESICAL REVIEWITETTERS 29 JUNE 2007

Magnon Condensation into a Q Ball in *He-B

Yu.M. Bunkov' and G. E. Volovik**

'Institute Neel, CNRS-UJF, Grenoble, France
*Low Temperature Laboratory, Helsinki University of Technology, Helsinki, Finland
*L. D. Landau Institute for Theoretical Physics, Moscow, Russia
(Received 9 March 2007; published 29 June 2007)

The theoretical prediction of Q balls in relativistic quantum fields is realized here experimentally in
superfluid *He-B. The condensed-matter analogs of relativistic Q balls are responsible for an extremely
long-lived signal of magnetic induction observed in NMR at the lowest temperatures. This Q ball is
another representative of a state with phase coherent precession of nuclear spins in *He-B, similar to the
well-known homogeneously precessing domain, which we interpret as Bose-Einstein condensation of spin
waves—magnons. At large charge Q, the effect of self-localization is observed. In the language of
relativistic quanturn fields it is caused by interaction between the charged and neutral fields, where the
neutral field provides the potential for the charged one. In the process of self-localization the charged field
modifies locally the neutral field so that the potential well is formed in which the charge Q is condensed.
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Just a crazy theoretical curiosity?
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PRL 98, 265302 (2007) FHESICAL REVIEWITETTERS 29 JUNE 2007

Magnon Condensation into a Q Ball in *He-B

Yu.M. Bunkov' and G. E. Volovik**

'Institute Neel, CNRS-UJF, Grenoble, France
*Low Temperature Laboratory, Helsinki University of Technology, Helsinki, Finland
*L. D. Landau Institute for Theoretical Physics, Moscow, Russia
(Received 9 March 2007; published 29 June 2007)

The theoretical prediction of Q balls in relativistic quantum fields is realized here experimentally in
superfluid *He-B. The condensed-matter analogs of relativistic Q balls are responsible for an extremely
long-lived signal of magnetic induction observed in NMR at the lowest temperatures. This Q ball is
another representative of a state with phase coherent precession of nuclear spins in *He-B, similar to the
well-known homogeneously precessing domain, which we interpret as Bose-Einstein condensation of spin
waves—magnons. At large charge Q, the effect of self-localization is observed. In the language of
relativistic quanturn fields it is caused by interaction between the charged and neutral fields, where the
neutral field provides the potential for the charged one. In the process of self-localization the charged field
modifies locally the neutral field so that the potential well is formed in which the charge Q is condensed.

Q-balls have been observed in condensed matter
systems. Might they be present elsewhere in
nature?
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Gauge Mediated MOdGlS Dine et al., 1997

D o 4 N—/
Gauge Gauge
. T oint. " it g
* In gauge mediated models the two-loop effective v A A~m
potential is logarithmic above the messenger scale = soft
Flat direction. AT ===

* In these models the SUSY breaking scale is

much smaller because of loop factors: ' ' _
2 % 0

My ~ M, ~10"°GeV
l6m
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Q-balls in Gauge-mediated models

» The potential for a flat direction in these models gives Q-
. 3/4
balls a mass: M(Q,)~m,,,0,".
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Q-balls in Gauge-mediated models

» The potential for a flat direction in these models gives Q-
. 3/4
balls a mass: M(Q,)~m,,,0,".

» Very large Q-balls are stable with respect to fermionic
decay modes:
M(Qy)
Op

~ mSOﬁQB_”4 <<1GeV
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Q-balls in Gauge-mediated models

» The potential for a flat direction in these models gives Q-
. 3/4
balls a mass: M(Q,)~m,,,0,".

» Very large Q-balls are stable with respect to fermionic
decay modes:
M(Qy) _
Op

4
-1/4 m
m << 1GeV > | —2 | 10"
s 2z (lGeV)
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Q-balls in Gauge-mediated models

» The potential for a flat direction in these models gives Q-
. 3/4
balls a mass: M(Q,)~m,,,0,".

» Very large Q-balls are stable with respect to fermionic
decay modes:
M(Qy) _
Op

4
-1/4 m
m << 1GeV > | —2 | 10"
s 2z (lGeV)

» Such Q-balls can be stable and exist as a (baryonic) dark
matter today.
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Are such large Q-balls fine-tuned?
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Are such large Q-balls fine-tuned?

» Extremely large Q-balls are likely in the AD mechanism.
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Are such large Q-balls fine-tuned?

» Extremely large Q-balls are likely in the AD mechanism.

The wavelength of the best-amplified mode can be as large as
the horizon size.

Q-balls are created just after the AD field starts its rotation:
-1 -1 2
H ~w ~¢,/M, .
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Are such large Q-balls fine-tuned?

» Extremely large Q-balls are likely in the AD mechanism.

The wavelength of the best-amplified mode can be as large as
the horizon size.

Q-balls are created just after the AD field starts its rotation:
-1 -1 2
H ~w ~¢,/M, .
Thus:
Opax = N,H™ ~ 09’0
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Are such large Q-balls fine-tuned?

» Extremely large Q-balls are likely in the AD mechanism.

The wavelength of the best-amplified mode can be as large as
the horizon size.

Q-balls are created just after the AD field starts its rotation:
- - 2
H'~w' ~¢, /M, .
Thus:
QO  =nH~wpw”

lan Shoemaker INFO 2009 36



Are such large Q-balls fine-tuned?

» Extremely large Q-balls are likely in the AD mechanism.

The wavelength of the best-amplified mode can be as large as
the horizon size.

Q-balls are created just after the AD field starts its rotation:
H'~o' ~¢,/ M

Thus:
Opax = N,H™ ~ 09’0

(%)
o8

s

4
Numerically Kasuya and Kawasaki (2001) have found Qnux = /3(%)
<10”"

N

where B =10 which implies O

max
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“Old” limits on Q-balls
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Kusenko, Loveridge,
How to detect a Q-ball Shaposhnikov (2005)
» The non-standard vacuum inside a Q-ball gives a large
Majorana mass for the gluino.

- —€¢- - - <

(0 q

__é___ 4

» This in turn gives quarks a large Majorana mass, allowing
Q-balls to convert baryons to anti-baryons:
q

n+Q0B)=n+0(B+2)
Q -ball

]
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Super-K Limits

Experimental limit for neutral Arafune et al. (2008)
FD Q-balls: Q>10"
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New limits on Q-balls: neutrinos and
neutron stars
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FROM THE DIRECTES OF
TRAINSFOTTING
AnD 28 DAYS LATER

SUNSIHINE
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FROM THE DIRECTES OF
TRAINSFOTTING
AnD 28 DAYS LATER

SUNSE INE
. Do Q-balls accumulate in
. 3 dense astrophysical
objects?
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Do Q-balls accumulate in dense
astrophysical objects?
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Do Q-balls accumulate in dense
astrophysical objects?

» Far too heavy to stop inside the Sun or the Earth:

®) e, (2] e
4 Earth 4 Sun
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Do Q-balls accumulate in dense
astrophysical objects?

» Far too heavy to stop inside the Sun or the Earth:
®) a0, (%)
4 Earth 4 Sun

» From this one might ask two questions:
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Do Q-balls accumulate in dense
astrophysical objects?

» Far too heavy to stop inside the Sun or the Earth:
®) e, (%) e
4 Earth 4 Sun

» From this one might ask two questions:

Might the passage of Q-balls through the Earth or Sun still be
observable despite their non-accumulation?
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Do Q-balls accumulate in dense
astrophysical objects?

» Far too heavy to stop inside the Sun or the Earth:
®) e, (%) e
4 Earth 4 Sun

» From this one might ask two questions:

Might the passage of Q-balls through the Earth or Sun still be
observable despite their non-accumulation?

Might they stop in objects as dense as White Dwarfs or Neutron
Stars!?
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Do Q-balls accumulate in dense
astrophysical objects?

» Far too heavy to stop inside the Sun or the Earth:
®) e, (%) e
4 Earth 4 Sun

» From this one might ask two questions:

Might the passage of Q-balls through the Earth or Sun still be
observable despite their non-accumulation?

Might they stop in objects as dense as White Dwarfs or Neutron

Stars?
Yes!
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Do Q-balls accumulate in dense
astrophysical objects?

» Far too heavy to stop inside the Sun or the Earth:
®) a0, (%)
4 Earth 4 Sun

» From this one might ask two questions:

Might the passage of Q-balls through the Earth or Sun still be
observable despite their non-accumulation?

Might they stop in objects as dense as White Dwarfs or Neutron

Stars!?
Yes!
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Neutron Star Limits

Neutron stars are so dense that a collision with a Q-ball
is sure to result in capture.
The time for a neutron star to capture a Q-ball is roughly:

1
’L’ ~
“C 4aR’F,,,

All sufficiently light Q-balls are captured inside Neutron
stars:

v 4/3
< 1043( S )
Q TeV
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Radiative corrections to the flat direction
potential

» Although any given FD has no classical potential, quantum
corrections lift this degeneracy:

2
V(¢) = Mjlog (1+ |j’4|2>

2 2 @
+ m3/2’¢| 1+K10g M2
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Radiative corrections to the flat direction
potential

» Although any given FD has no classical potential, quantum
corrections lift this degeneracy:

2
V(¢) = Mjlog (1+ |j’4|2>

2 2 @
+ m3/2|¢| 1+K10g M2

» When the first term dominates: Mgauge(QB) ~ MSQ%

» Gauge-type Q-ball dark matter: Kusenko, Shaposhnikov
(1997).
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Radiative corrections to the flat direction
potential

» Although any given FD has no classical potential, quantum
corrections lift this degeneracy:

2
V(¢) = Mjlog (1+ L{‘}L)

2 2 @
+ m3/2|¢| 1+K10g M2

» When the first term dominates: Mgauge(QB) ~ MSQ%

» Gauge-type Q-ball dark matter: Kusenko, Shaposhnikov
(1997).

» When the second term dominates: M, . (Qp) ~ m;,,0;.
» Gravity-type Q-ball dark matter: Kasuya, Kawasaki (2000).
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Radiative corrections to the flat direction
potential

» Although any given FD has no classical potential, quantum
corrections lift this degeneracy:

2
Vo) = Milog (1+ 5 )

2 lo?
+ m3/2|¢| 1+K10g M2

» When the first term dominates: Mgauge(QB) ~ MSQ%

» Gauge-type Q-ball dark matter: Kusenko, Shaposhnikov
(1997).

» When the second term dominates: M, . (Qp) ~ m;,,0;.

- Gravity-type-Q-ball- dark-matter-Kasuya, Kawasald (2000):
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. l.S. arXiv:0907.0269
Q-split

» The effects of gravity-mediation alter the mass-charge relation:

Mgauge(QB) ~ MSQ3/4 — Mngily(QB) ~ m3/2QB
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. l.S. arXiv:0907.0269
Q-split
The effects of gravity-mediation alter the mass-charge relation:

Mgauge(QB) ~ MSQ3/4 = Mgi’aVily (QB) ~ m3/2QB

Although a gravity-type Q-ball can be stable with respect to
fermionic decay, it is not stable with respect to solitonic decay.
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[.S. arXiv:0907.0269

Q-split
The effects of gravity-mediation alter the mass-charge relation:

Mgauge(QB) ~ MSQ3/4 = Mgm\/ily (QB) ~ m3/2QB

Although a gravity-type Q-ball can be stable with respect to
fermionic decay, it is not stable with respect to solitonic decay.

M 4
Once a Q-ball reaches a certain critical charge < N( %13/2)
it fragments into two equally-sized daughter Q-balls.
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Q-split
The effects of gravity-mediation alter the mass-charge relation:

Mgauge(QB) ~ MSQ3/4 = Mgi’UtVily (QB) ~ m3/2QB

Although a gravity-type Q-ball can be stable with respect to
fermionic decay, it is not stable with respect to solitonic decay.

M 4
Once a Q-ball reaches a certain critical charge < N( %13/2)
it fragments into two equally-sized daughter Q-balls.
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l.S. arXiv:0907.0269

Q-split
The effects of gravity-mediation alter the mass-charge relation:
Mgauge(QB) ~ MSQ3/4 = Mgi’UtVily (QB) ~ m3/2QB

Although a gravity-type Q-ball can be stable with respect to
fermionic decay, it is not stable with respect to solitonic decay.

M 4
Once a Q-ball reaches a certain critical charge < N( %13/2)
it fragments into two equally-sized daughter Q-balls.

First Q-split occurs
after about | year
inside a neutron
star.
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l.S. arXiv:0907.0269

Astrophage of Neutron Stars via Q-splitting

Q-splitting leads to the exponential growth of Q-balls inside a
neutron star:

1,
Ny(t) =Q,,2

: 5T L
Typical neutron stars have about Qys ~ 107, which is
consumed by Q-balls in a very short time:

2 4
t. <109(keV) ( M; ) s
m,, | \TeV
Thus all Q-balls which would be captured by neutron stars are
phenomenologically excluded.
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[.S. arXiv:0907.0269

New astrophysical limits on Q-balls

1092 ¢

10°0¢

109

10% ¢

103% ¢
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[.S. arXiv:0907.0269

New astrophysical limits on Q-balls

1062 \ 3
Phenomenological
1056 | | constraints imply:
ms,,, < keV
1050 r 1
Which naturally
10% 1 avoids overclosure.
1038 ¢ 3
1032’\ el el el MR
1071 1071 107 1077 107
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U(1)g violation can hide the Q-split

Kusenko, Loveridge, Shaposhnikov (2005) used the higher
dimensional operators:

o ) \ i n—l+m ¢—* n—1-m
o] ]

To show that a particular flat direction with m =0 has a
maximum Q-ball size due to U(I) violation:

4n-12

Thus FDs for which O, <Q,, , evade the neutron star
limits.
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How to constrain Q-balls with e <&,
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Neutrino signal from terrestrial passage of
Q-balls

Q- ball
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Neutrinos from Q-balls passing through the
Earth

» Q-balls convert nucelons into anti-nucleons with high
probability. Subsequent annihilations lead to flux of

neutrinos:
N
nn — (.777 +J7T + 7T )
3
q gt - u o+ v,(v,)
Q - ball .—> u —=e +v,(v,)
q
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Neutrino flux

0,V 102\ (Tev
N@ ~IDM & 351()°
M(QB) QB MS

d]\; v~ 10(7R(Q;)* )1, V4N,

1 dN,
Fv,@ ~ 2
4R, dt

1024 1/4 TeV 3
F, o~ 0.1( 0 ) (L) cm™s™
B

N
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Neutrino flux

0,V 102\ (Tev
N, ~-21-9 - 3x10°

M(Q,) o) A Ms
dN, ~10(75R(QB)2)n”vON@
Fro~ s
ey N (AP
) s

This is right around the
same energies and
total flux as the
atmospheric neutrino
flux, and may be
detectable.
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Zenith Angle Dependence

The isotropy of the Q-ball flux on the Earth implies a
zenith angle dependence determined by the Earth
geometry:

0, 8,<n/2
F,(0,) < { pmcosB,, w/2<6,<6.
Pm COS 92 5 & (pc T pm)fc(ez)y 0c S 9z S /i

where f.(0.) = \/(RC/R@)2 —sin6, ,and Pm and Pc
are the mantle and core densities respectively.
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Zenith Angle dependence

1.6 7
FN
150 N .
[ \
— 14+ .
.,g i
—~ = [ A\
o = 1.3+ \ q
wn > i \
e = I 1
S 8 I S~
~— S s
N 1.2+ pal b
= -.-E I ~~~~~
S L -~
nﬁa 11, T=~ ~ i
E ~~~~~~ ]
1.0 - —==.
09 [ . | . | . | . | . |
-1.0 -0.8 -0.6 -04 -0.2 0.0
cos (6,)
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Q-ball induced neutrino spectrum

The neutrino spectrum can be found from the

experimentally known pion spectrum from at rest PP
annhiilations

dN, 0N, ok,
dE, 0N, JE,

dN
dE

And normalizing to the overall flux found earlier:

dN
Fy= - dE,
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Neutrino Spectrum

7
= 6 i
DR Qg = 10*
S i
7] 5, |
75! i
N i
g 4 ;
i i
s 3 |
o
el 2f .
~ > 0
Z|= ]
= |

000 005 010 015 020 025 030 035
E, [GeV]
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Spectrum of Q-ball produced neutrinos

Important note: this spectrum ignores possibly important
matter effects.

Pion and muon interactions in matter may cause their
decay at rest, induces a monochromatic line in the
neutrino spectrum.

If confirmed, this will aid in the prospects for detection.
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Conclusions

» We have presented stringent new limits on Q-balls for
which Q.. >0, .
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Conclusions

We have presented stringent new limits on Q-balls for
which Q.. >0, .

For such Q-balls not to destroy neutron stars, we need 7;,, < keV
which can be discovered at the LHC, and which naturally avoids
gravitino overclosure.
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Conclusions

We have presented stringent new limits on Q-balls for
which Q.. >0, .

For such Q-balls not to destroy neutron stars, we need 7;,, < keV
which can be discovered at the LHC, and which naturally avoids
gravitino overclosure.

Q-balls in the opposite limit are much less constrained,
but their transitory passage through the Earth may
produce a detectable level of neutrinos.
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Conclusions

We have presented stringent new limits on Q-balls for
which Q.. >0, .

For such Q-balls not to destroy neutron stars, we need 7;,, < keV
which can be discovered at the LHC, and which naturally avoids
gravitino overclosure.

Q-balls in the opposite limit are much less constrained,
but their transitory passage through the Earth may
produce a detectable level of neutrinos.

Such a signal has a peculiar zenith angle dependence and a small
annual modulation.

lan Shoemaker INFO 2009 78



